Accelerating the conversion of black chokeberry anthocyanins toward vinylphenolic pyranoanthocyanins by displaying phenolic acid decarboxylase from Lactiplantibacillus plantarum on the surface of Pichia pastoris

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry Pub Date : 2025-02-18 DOI:10.1016/j.foodchem.2025.143408
Weijie Zhou, Qing Zhang, Kuanchen Huang, Zhang Huang, Weiqiu Ding, Jianxia Sun, Weibin Bai
{"title":"Accelerating the conversion of black chokeberry anthocyanins toward vinylphenolic pyranoanthocyanins by displaying phenolic acid decarboxylase from Lactiplantibacillus plantarum on the surface of Pichia pastoris","authors":"Weijie Zhou, Qing Zhang, Kuanchen Huang, Zhang Huang, Weiqiu Ding, Jianxia Sun, Weibin Bai","doi":"10.1016/j.foodchem.2025.143408","DOIUrl":null,"url":null,"abstract":"In fermented chokeberry products, hydroxycinnamic acids are enzymatically converted into 4-vinyl derivatives by phenolic acid decarboxylase (PAD), which react with anthocyanins (ACNs) to form stable pyranoanthocyanins (PACNs) that enhance color stability and exhibit excellent bioactivity. However, the fermentation process is usually acidic, the level of PAD secreted by microorganisms is limited and PAD has poor acid stability, resulting in low PACN production. To overcome this, we engineered a whole-cell biocatalyst (WCB) by displaying PAD from <em>Lactiplantibacillus plantarum</em> on <em>Pichia pastoris</em> GS115 (d<em>LP</em>PAD). This WCB showed improved acid tolerance and thermal stability, efficiently converting <em>Aronia melanocarpa</em> anthocyanins (<em>AM</em>As) into PACNs. Additionally, we examined the relationship between hydroxycinnamic acid structure and <em>LP</em>PAD catalytic efficiency. This work introduces a cost-effective, impurity-free biocatalytic strategy to enhance PACN yields, with potential applications in berry fermentation products and related industries.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"85 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143408","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In fermented chokeberry products, hydroxycinnamic acids are enzymatically converted into 4-vinyl derivatives by phenolic acid decarboxylase (PAD), which react with anthocyanins (ACNs) to form stable pyranoanthocyanins (PACNs) that enhance color stability and exhibit excellent bioactivity. However, the fermentation process is usually acidic, the level of PAD secreted by microorganisms is limited and PAD has poor acid stability, resulting in low PACN production. To overcome this, we engineered a whole-cell biocatalyst (WCB) by displaying PAD from Lactiplantibacillus plantarum on Pichia pastoris GS115 (dLPPAD). This WCB showed improved acid tolerance and thermal stability, efficiently converting Aronia melanocarpa anthocyanins (AMAs) into PACNs. Additionally, we examined the relationship between hydroxycinnamic acid structure and LPPAD catalytic efficiency. This work introduces a cost-effective, impurity-free biocatalytic strategy to enhance PACN yields, with potential applications in berry fermentation products and related industries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
期刊最新文献
Editorial Board Molecularly imprinted Fe3O4 nanoparticles-based magnetic 3D photonic crystal microspheres for specific adsorption of aflatoxin B1 in grains Machine learning-assisted Fourier transform infrared spectroscopy to predict adulteration in coriander powder Electrochemical sensor for selective diquat detection based on samarium-stannate-nanoparticle-anchored titanium aluminum carbide MXene nanocomposites Contribution of post-harvest processing in cocoa bean: Chemometric and metagenomic analysis in fermentation step
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1