A halloysite nanotubes-based hybrid fluorous monolith as the mixed-mode sorbent for hydrophilic and hydrophobic interactions and its application for analysis of antibiotics from milk powder and milk samples
{"title":"A halloysite nanotubes-based hybrid fluorous monolith as the mixed-mode sorbent for hydrophilic and hydrophobic interactions and its application for analysis of antibiotics from milk powder and milk samples","authors":"Cheng Lin, Jiarun Mao, Yihui Chen, Chunyan Hou, Xiaoqiang Qiao, Ningkun Wu, Tingting Wang","doi":"10.1016/j.foodchem.2025.143440","DOIUrl":null,"url":null,"abstract":"Determining the hydrophilic and hydrophobic antibiotics in milk and related products poses significant challenges due to their polarity differences and trace levels. Herein, we proposed a halloysite nanotubes-based hybrid fluorous monolith (HNTs-PFOTS monolith) as a sorbent for spin-tip solid-phase extraction (SPE). Leveraging the perfluorooctyl groups of the HNTs-PFOTS monolith, antibiotics can be adsorbed through hydrophilic and hydrophobic interactions. An analytical method was developed by combining the HNTs-PFOTS monolith-based spin-tip SPE method with liquid chromatography-tandem mass spectrometry. Under optimized conditions, the method exhibited excellent purification capabilities, low detection limits (0.01–0.03 μg/kg), high recoveries (80.0–112.3 %), and satisfactory reproducibility (intra-day RSDs of 0.4–8.8 % and inter-day RSDs of 1.0–10.9 %) for hydrophilic and hydrophobic antibiotics in milk and milk product samples. This study offers a novel approach for developing sorbents targeting antibiotics and provides a new analytical method for determining hydrophilic and hydrophobic antibiotics in food products.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"15 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143440","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the hydrophilic and hydrophobic antibiotics in milk and related products poses significant challenges due to their polarity differences and trace levels. Herein, we proposed a halloysite nanotubes-based hybrid fluorous monolith (HNTs-PFOTS monolith) as a sorbent for spin-tip solid-phase extraction (SPE). Leveraging the perfluorooctyl groups of the HNTs-PFOTS monolith, antibiotics can be adsorbed through hydrophilic and hydrophobic interactions. An analytical method was developed by combining the HNTs-PFOTS monolith-based spin-tip SPE method with liquid chromatography-tandem mass spectrometry. Under optimized conditions, the method exhibited excellent purification capabilities, low detection limits (0.01–0.03 μg/kg), high recoveries (80.0–112.3 %), and satisfactory reproducibility (intra-day RSDs of 0.4–8.8 % and inter-day RSDs of 1.0–10.9 %) for hydrophilic and hydrophobic antibiotics in milk and milk product samples. This study offers a novel approach for developing sorbents targeting antibiotics and provides a new analytical method for determining hydrophilic and hydrophobic antibiotics in food products.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.