Mechanistic and Computational Insights into Asymmetric Intramolecular Iron-Catalyzed Nitrene Transfer into Benzylic C–H Bonds

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2025-02-18 DOI:10.1021/acscatal.5c00222
Kyeongdeok Seo, Yu Zhang, Tuan Anh Trinh, Jed Kim, Lihan Qi, Ilia A. Guzei, Joseph R. Clark, Peng Liu, Jennifer M. Schomaker
{"title":"Mechanistic and Computational Insights into Asymmetric Intramolecular Iron-Catalyzed Nitrene Transfer into Benzylic C–H Bonds","authors":"Kyeongdeok Seo, Yu Zhang, Tuan Anh Trinh, Jed Kim, Lihan Qi, Ilia A. Guzei, Joseph R. Clark, Peng Liu, Jennifer M. Schomaker","doi":"10.1021/acscatal.5c00222","DOIUrl":null,"url":null,"abstract":"Chiral, nonracemic amines are valuable synthetic building blocks for diverse bioactive molecules. Asymmetric C–H amination via transition metal-catalyzed nitrene transfer (NT) is a popular strategy to access enantioenriched benzylamines, but many useful chemocatalysts for this transformation are based on precious metals or require elaborate ligands. Iron catalysts supported by simple ligands capable of asymmetric aminations of diverse sulfamates would be valuable but are surprisingly rare. Herein, we study features of the asymmetric iron-catalyzed NT of homo- and bis-homobenzylic sulfamates to better understand why the development of such reactions has proven challenging. Diverse parameters were examined, including ligand, iron source, oxidant, additive, and solvent. Reactions of the preoxidized iminoiodinane revealed some unexpected relationships between the p<i>K</i><sub>a</sub> of acid additives and the enantiomeric ratio (<i>er</i>). Computational models show that radical rebound is the enantiodetermining step and highlight noncovalent interactions (NCIs) between the ligand and aryl ring of the substrate that drive the <i>er</i>. These insights, combined with experimental data, provide a foundation for the design of second-generation chemocatalysts for iron-catalyzed asymmetric C–H amidation via NT.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"16 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c00222","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral, nonracemic amines are valuable synthetic building blocks for diverse bioactive molecules. Asymmetric C–H amination via transition metal-catalyzed nitrene transfer (NT) is a popular strategy to access enantioenriched benzylamines, but many useful chemocatalysts for this transformation are based on precious metals or require elaborate ligands. Iron catalysts supported by simple ligands capable of asymmetric aminations of diverse sulfamates would be valuable but are surprisingly rare. Herein, we study features of the asymmetric iron-catalyzed NT of homo- and bis-homobenzylic sulfamates to better understand why the development of such reactions has proven challenging. Diverse parameters were examined, including ligand, iron source, oxidant, additive, and solvent. Reactions of the preoxidized iminoiodinane revealed some unexpected relationships between the pKa of acid additives and the enantiomeric ratio (er). Computational models show that radical rebound is the enantiodetermining step and highlight noncovalent interactions (NCIs) between the ligand and aryl ring of the substrate that drive the er. These insights, combined with experimental data, provide a foundation for the design of second-generation chemocatalysts for iron-catalyzed asymmetric C–H amidation via NT.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
A Comprehensive Theoretical Study of the Mechanism for Dry Reforming of Methane on a Ni4/ZrO2(101) Catalyst Under External Electric Fields: The Role of Interface and Oxygen Vacancy Solving the Conundrum of the Influence of Irradiation Power on Photothermal CO2 Hydrogenation Basal-Plane Pores Activate Monolayer MoS2 for the Hydrogen Evolution Reaction Direct Synthesis of Hexa-peri-hexabenzocoronene on Au(111) Surfaces: Insights into Intramolecular Dehydrocyclization and Molecular Modification Strategies Trace of Atomically Dispersed Pd Enables Unprecedented Butadiene Semihydrogenation Performance Over Copper Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1