Tongxuan Wei, Qinguo Liu, Jun Li, Song Song, Liqin Zhang
{"title":"Functional Aptamers In Vitro Evolution for Protein–Protein Interaction Blockage","authors":"Tongxuan Wei, Qinguo Liu, Jun Li, Song Song, Liqin Zhang","doi":"10.1021/acs.analchem.4c04609","DOIUrl":null,"url":null,"abstract":"As aptamer development progresses, their applications have expanded significantly beyond high affinity to include functional capabilities. Currently, the identification of functional aptamers relies on traditional SELEX techniques, followed by functional validation and computer-assisted redesign of high-affinity aptamers. However, high affinity does not guarantee optimal functionality, making the search for functional aptamers from binding pools time-consuming and labor-intensive. Addressing this challenge, we introduce functional aptamers <i>in vitro</i> evolution (FAIVE), a novel screening method that links sequence functionality to fluorescence intensity. We demonstrated the effectiveness of FAIVE by obtaining modified DNA aptamers capable of disrupting the interaction between the SARS-CoV-2 spike receptor-binding domain (RBD) and hACE2, targeting protein–protein interaction inhibition. Furthermore, we investigated the criteria for validating the quality of the bead library generated for selection by modeling the emulsion PCR process, providing theoretical insights for future applications. The concept of incorporating fluorescent signal reporting of aptamer functionality into the aptamer selection process holds the potential to facilitate the identification of aptamers with diverse functionalities and is readily adaptable to various research contexts.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04609","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As aptamer development progresses, their applications have expanded significantly beyond high affinity to include functional capabilities. Currently, the identification of functional aptamers relies on traditional SELEX techniques, followed by functional validation and computer-assisted redesign of high-affinity aptamers. However, high affinity does not guarantee optimal functionality, making the search for functional aptamers from binding pools time-consuming and labor-intensive. Addressing this challenge, we introduce functional aptamers in vitro evolution (FAIVE), a novel screening method that links sequence functionality to fluorescence intensity. We demonstrated the effectiveness of FAIVE by obtaining modified DNA aptamers capable of disrupting the interaction between the SARS-CoV-2 spike receptor-binding domain (RBD) and hACE2, targeting protein–protein interaction inhibition. Furthermore, we investigated the criteria for validating the quality of the bead library generated for selection by modeling the emulsion PCR process, providing theoretical insights for future applications. The concept of incorporating fluorescent signal reporting of aptamer functionality into the aptamer selection process holds the potential to facilitate the identification of aptamers with diverse functionalities and is readily adaptable to various research contexts.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.