Mathias Schannor, Marcus Oelze, Heike Traub, Yubei He, Robin Schmidt, Luisa Heidemann, Lynn Jeanette Savic, Jochen Vogl, Björn Meermann
{"title":"Advancing Biomarker Research: In Situ Cu Isotope Analysis in Liver Tumors by LA-MC-ICP-MS","authors":"Mathias Schannor, Marcus Oelze, Heike Traub, Yubei He, Robin Schmidt, Luisa Heidemann, Lynn Jeanette Savic, Jochen Vogl, Björn Meermann","doi":"10.1021/acs.analchem.4c05626","DOIUrl":null,"url":null,"abstract":"Stable metal isotopes have received increasing attention as medical biomarkers due to their potential to detect changes in metal metabolism related to diseases. In particular, copper stable isotopes are a powerful tool to identify isotopic variation between tumors and healthy tissue, suggesting application in cancer diagnosis. However, potential mechanisms causing isotope fractionation, such as redox- or bond-forming reactions and interactions of metals during transmembrane import and export, are less well understood. Here, we established an <i>in situ</i> method using laser ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) to advance our understanding of the underlying processes responsible for isotope fractionation between normal and diseased tissues. Gelatin-based bracketing standards and quality control reference materials, crucial for laser ablation analysis, were developed to allow correction for instrumentally induced isotope fractionation during LA-MC-ICP-MS analysis. Using such matrix-matched standards, the method achieved intermediate precisions for delta values of better than 0.15 ‰ (2 <i>s</i>) for inorganic reference materials and of better than 0.17 ‰ (2 <i>s</i>) for biological reference materials. The developed routine was tested on rabbit VX2 liver tumor samples, a model system resembling human hepatocellular carcinoma (HCC) used to study liver cancer. <i>In situ</i> Cu isotope compositions between healthy (<i></i><span style=\"color: inherit;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><msubsup><mrow><mi>&#x3B4;</mi></mrow><mrow><mi>NIST</mi><mn>976</mn></mrow><mrow><mi>65/63</mi></mrow></msubsup><mrow><mo stretchy=\"false\">(</mo><mi>Cu</mi><mo stretchy=\"false\">)</mo></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 5.514em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 5.003em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.48em, 1004.95em, 3.014em, -999.997em); top: -2.554em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 3.185em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝛿</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.298em, 1001.71em, 4.151em, -999.997em); top: -4.372em; left: 0.457em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">65/63</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.298em, 1002.73em, 4.151em, -999.997em); top: -3.69em; left: 0.457em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NIST</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">976</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span style=\"font-family: STIXMathJax_Main;\">Cu</span><span style=\"font-family: STIXMathJax_Main;\">)</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>δ</mi></mrow><mrow><mi>NIST</mi><mn>976</mn></mrow><mrow><mi>65/63</mi></mrow></msubsup><mrow><mo stretchy=\"false\">(</mo><mi>Cu</mi><mo stretchy=\"false\">)</mo></mrow></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msubsup><mrow><mi>δ</mi></mrow><mrow><mi>NIST</mi><mn>976</mn></mrow><mrow><mi>65/63</mi></mrow></msubsup><mrow><mo stretchy=\"false\">(</mo><mi>Cu</mi><mo stretchy=\"false\">)</mo></mrow></math></script> = −1.5 ‰ to 0.2 ‰) and tumorous (<i></i><span style=\"color: inherit;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><msubsup><mrow><mi>&#x3B4;</mi></mrow><mrow><mi>NIST</mi><mn>976</mn></mrow><mrow><mi>65/63</mi></mrow></msubsup><mrow><mo stretchy=\"false\">(</mo><mi>Cu</mi><mo stretchy=\"false\">)</mo></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 5.514em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 5.003em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.48em, 1004.95em, 3.014em, -999.997em); top: -2.554em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 3.185em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝛿</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.298em, 1001.71em, 4.151em, -999.997em); top: -4.372em; left: 0.457em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">65/63</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.298em, 1002.73em, 4.151em, -999.997em); top: -3.69em; left: 0.457em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NIST</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">976</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span style=\"font-family: STIXMathJax_Main;\">Cu</span><span style=\"font-family: STIXMathJax_Main;\">)</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>δ</mi></mrow><mrow><mi>NIST</mi><mn>976</mn></mrow><mrow><mi>65/63</mi></mrow></msubsup><mrow><mo stretchy=\"false\">(</mo><mi>Cu</mi><mo stretchy=\"false\">)</mo></mrow></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msubsup><mrow><mi>δ</mi></mrow><mrow><mi>NIST</mi><mn>976</mn></mrow><mrow><mi>65/63</mi></mrow></msubsup><mrow><mo stretchy=\"false\">(</mo><mi>Cu</mi><mo stretchy=\"false\">)</mo></mrow></math></script> = 0.0 ‰ to 1.3 ‰) liver tissue show distinct differences in their isotope ratios. The observed isotopic dichotomy is consistent with previous solution-based MC-ICP-MS work, showing enrichment of heavy <sup>65</sup>Cu in cancer biopsies relative to healthy tissue.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"21 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05626","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stable metal isotopes have received increasing attention as medical biomarkers due to their potential to detect changes in metal metabolism related to diseases. In particular, copper stable isotopes are a powerful tool to identify isotopic variation between tumors and healthy tissue, suggesting application in cancer diagnosis. However, potential mechanisms causing isotope fractionation, such as redox- or bond-forming reactions and interactions of metals during transmembrane import and export, are less well understood. Here, we established an in situ method using laser ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) to advance our understanding of the underlying processes responsible for isotope fractionation between normal and diseased tissues. Gelatin-based bracketing standards and quality control reference materials, crucial for laser ablation analysis, were developed to allow correction for instrumentally induced isotope fractionation during LA-MC-ICP-MS analysis. Using such matrix-matched standards, the method achieved intermediate precisions for delta values of better than 0.15 ‰ (2 s) for inorganic reference materials and of better than 0.17 ‰ (2 s) for biological reference materials. The developed routine was tested on rabbit VX2 liver tumor samples, a model system resembling human hepatocellular carcinoma (HCC) used to study liver cancer. In situ Cu isotope compositions between healthy (𝛿65/63NIST976(Cu) = −1.5 ‰ to 0.2 ‰) and tumorous (𝛿65/63NIST976(Cu) = 0.0 ‰ to 1.3 ‰) liver tissue show distinct differences in their isotope ratios. The observed isotopic dichotomy is consistent with previous solution-based MC-ICP-MS work, showing enrichment of heavy 65Cu in cancer biopsies relative to healthy tissue.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.