Three-Electron Uric Acid Oxidation via Interdistance-Dependent Switching Pathways in Correlated Single-Atom Catalysts for Boosting Sensing Signals

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-17 DOI:10.1002/anie.202500474
Bowen Jiang, Heng Zhang, Rui Pan, Min Ji, Lin Zhu, Guoju Zhang, Jing Liu, Huihui Shi, Huang Huang, Shu Wan, Kuibo Yin, Litao Sun
{"title":"Three-Electron Uric Acid Oxidation via Interdistance-Dependent Switching Pathways in Correlated Single-Atom Catalysts for Boosting Sensing Signals","authors":"Bowen Jiang, Heng Zhang, Rui Pan, Min Ji, Lin Zhu, Guoju Zhang, Jing Liu, Huihui Shi, Huang Huang, Shu Wan, Kuibo Yin, Litao Sun","doi":"10.1002/anie.202500474","DOIUrl":null,"url":null,"abstract":"The overly simplistic geometric and electronic structures of single-atom catalysts have become a significant bottleneck in the field of single-atom sensing, impeding both the design of highly efficient electrochemical sensors and the establishment of structure-activity relationships. To address these challenges, we present a novel strategy to boost the sensing performance of single-atom catalysts by precisely tuning the single-atomic interdistance (SAD) in correlated single-atom catalysts (c-SACs). A series of Ru-based c-SACs (Rud=6.2 Å, Rud=7.0 Å, and Rud=9.3 Å) are synthesized with predetermined SAD values, which are comprehensively characterized by various techniques. Electrochemical studies on uric acid (UA) oxidation reveal that Rud=6.2 Å demonstrates an extraordinary sensitivity of 9.83 μA μM-1cm-2, which is superior to most of electrochemistry biosensors reported previously. Kinetic analysis and product examination unveil that the 6.2 Å Ru SAD instigates a distinctive three-electron oxidation of UA, with an extra electron transfer compared to the conventional two-electron pathway, which fundamentally enhances its sensitivity. Density functional theory calculations confirm the optimal SAD facilitates dual-site UA adsorption and accelerated charge transfer dynamics. This investigation provides novel insights into the strategic engineering of high-performance SAC-based electrochemical sensors by precisely controlling the atomic-scale structure of active sites.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500474","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The overly simplistic geometric and electronic structures of single-atom catalysts have become a significant bottleneck in the field of single-atom sensing, impeding both the design of highly efficient electrochemical sensors and the establishment of structure-activity relationships. To address these challenges, we present a novel strategy to boost the sensing performance of single-atom catalysts by precisely tuning the single-atomic interdistance (SAD) in correlated single-atom catalysts (c-SACs). A series of Ru-based c-SACs (Rud=6.2 Å, Rud=7.0 Å, and Rud=9.3 Å) are synthesized with predetermined SAD values, which are comprehensively characterized by various techniques. Electrochemical studies on uric acid (UA) oxidation reveal that Rud=6.2 Å demonstrates an extraordinary sensitivity of 9.83 μA μM-1cm-2, which is superior to most of electrochemistry biosensors reported previously. Kinetic analysis and product examination unveil that the 6.2 Å Ru SAD instigates a distinctive three-electron oxidation of UA, with an extra electron transfer compared to the conventional two-electron pathway, which fundamentally enhances its sensitivity. Density functional theory calculations confirm the optimal SAD facilitates dual-site UA adsorption and accelerated charge transfer dynamics. This investigation provides novel insights into the strategic engineering of high-performance SAC-based electrochemical sensors by precisely controlling the atomic-scale structure of active sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相关单原子催化剂中的间距开关途径实现三电子尿酸氧化,从而增强传感信号
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Tandem Assembly and Etching Chemistry towards Mesoporous Conductive Metal-Organic Frameworks for Sodium Storage over 50,000 Cycles A Multifunctional Molecular Modulated Strategy Featuring Novel Li+ Transport Centers and Li2O-Rich SEI Layer for High-Performance All-Solid-State Lithium Metal Batteries Water in Electrocatalysis Dynamic Liquid Crystal Elastomers for Body Heat- and Sunlight-Driven Self-Sustaining Motion via Material-Structure Synergy Overcoming Boundaries: Towards the Ambient Aqueous Synthesis of Covalent Organic Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1