{"title":"Cutting circuits with multiple two-qubit unitaries","authors":"Lukas Schmitt, Christophe Piveteau, David Sutter","doi":"10.22331/q-2025-02-18-1634","DOIUrl":null,"url":null,"abstract":"Quasiprobabilistic cutting techniques allow us to partition large quantum circuits into smaller subcircuits by replacing non-local gates with probabilistic mixtures of local gates. The cost of this method is a sampling overhead that scales exponentially in the number of cuts. It is crucial to determine the minimal cost for gate cutting and to understand whether allowing for classical communication between subcircuits can improve the sampling overhead. In this work, we derive a closed formula for the optimal sampling overhead for cutting an arbitrary number of two-qubit unitaries and provide the corresponding decomposition. We find that cutting several arbitrary two-qubit unitaries together is cheaper than cutting them individually and classical communication does not give any advantage.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"19 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-18-1634","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quasiprobabilistic cutting techniques allow us to partition large quantum circuits into smaller subcircuits by replacing non-local gates with probabilistic mixtures of local gates. The cost of this method is a sampling overhead that scales exponentially in the number of cuts. It is crucial to determine the minimal cost for gate cutting and to understand whether allowing for classical communication between subcircuits can improve the sampling overhead. In this work, we derive a closed formula for the optimal sampling overhead for cutting an arbitrary number of two-qubit unitaries and provide the corresponding decomposition. We find that cutting several arbitrary two-qubit unitaries together is cheaper than cutting them individually and classical communication does not give any advantage.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.