Cutting circuits with multiple two-qubit unitaries

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-02-18 DOI:10.22331/q-2025-02-18-1634
Lukas Schmitt, Christophe Piveteau, David Sutter
{"title":"Cutting circuits with multiple two-qubit unitaries","authors":"Lukas Schmitt, Christophe Piveteau, David Sutter","doi":"10.22331/q-2025-02-18-1634","DOIUrl":null,"url":null,"abstract":"Quasiprobabilistic cutting techniques allow us to partition large quantum circuits into smaller subcircuits by replacing non-local gates with probabilistic mixtures of local gates. The cost of this method is a sampling overhead that scales exponentially in the number of cuts. It is crucial to determine the minimal cost for gate cutting and to understand whether allowing for classical communication between subcircuits can improve the sampling overhead. In this work, we derive a closed formula for the optimal sampling overhead for cutting an arbitrary number of two-qubit unitaries and provide the corresponding decomposition. We find that cutting several arbitrary two-qubit unitaries together is cheaper than cutting them individually and classical communication does not give any advantage.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"19 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-18-1634","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quasiprobabilistic cutting techniques allow us to partition large quantum circuits into smaller subcircuits by replacing non-local gates with probabilistic mixtures of local gates. The cost of this method is a sampling overhead that scales exponentially in the number of cuts. It is crucial to determine the minimal cost for gate cutting and to understand whether allowing for classical communication between subcircuits can improve the sampling overhead. In this work, we derive a closed formula for the optimal sampling overhead for cutting an arbitrary number of two-qubit unitaries and provide the corresponding decomposition. We find that cutting several arbitrary two-qubit unitaries together is cheaper than cutting them individually and classical communication does not give any advantage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用准概率切割技术,我们可以用本地门的概率混合物取代非本地门,从而将大型量子电路分割成更小的子电路。这种方法的代价是采样开销,而采样开销与切割次数成指数关系。确定门切割的最小成本以及了解允许子电路之间的经典通信是否能改善采样开销至关重要。在这项工作中,我们推导出了切割任意数量双量子比特单元的最佳采样开销的封闭公式,并提供了相应的分解。我们发现,将多个任意的双量子比特单元一起切割比单独切割成本更低,而经典通信并不带来任何优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
On multivariate polynomials achievable with quantum signal processing Potential and limitations of random Fourier features for dequantizing quantum machine learning Fermionic wave packet scattering: a quantum computing approach Approximating dynamical correlation functions with constant depth quantum circuits Cutting circuits with multiple two-qubit unitaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1