Excitation of Spin Waves by Oscillatory Voltage-Controlled Dzyaloshinskii–Moriya Interaction in Ferroelectric/Skyrmion Heterostructure

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-02-18 DOI:10.1021/acs.nanolett.4c06395
Jincheng Hou, Shaojie Hu, Long You
{"title":"Excitation of Spin Waves by Oscillatory Voltage-Controlled Dzyaloshinskii–Moriya Interaction in Ferroelectric/Skyrmion Heterostructure","authors":"Jincheng Hou, Shaojie Hu, Long You","doi":"10.1021/acs.nanolett.4c06395","DOIUrl":null,"url":null,"abstract":"Spin waves exhibit high-speed, low-energy information transmission and encoding capabilities. The core component, the spin wave generator, currently faces challenges of high energy consumption and integration difficulties. This study proposes a spin wave generator based on a ferroelectric/ferromagnetic heterostructure. This generator utilizes an electric field to control the Dzyaloshinskii–Moriya interaction (DMI), regulating the dynamics of magnetic topological states like skyrmions, thereby achieving low-power excitation of spin waves. First, we conducted a theoretical analysis to study the impact of oscillatory voltage-controlled DMI on the dynamic properties of skyrmions, identifying the excitation conditions for both the breathing mode and the spin wave mode. Additionally, we clarified the relationship among spin wave intensity, DMI coefficient, and frequency. Finally, we validated the theoretical predictions of the spin wave excitation in this structure through micromagnetic simulations. This work points the way toward developing ultrahigh frequency, low-power, and highly stable spin wave generators.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06395","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin waves exhibit high-speed, low-energy information transmission and encoding capabilities. The core component, the spin wave generator, currently faces challenges of high energy consumption and integration difficulties. This study proposes a spin wave generator based on a ferroelectric/ferromagnetic heterostructure. This generator utilizes an electric field to control the Dzyaloshinskii–Moriya interaction (DMI), regulating the dynamics of magnetic topological states like skyrmions, thereby achieving low-power excitation of spin waves. First, we conducted a theoretical analysis to study the impact of oscillatory voltage-controlled DMI on the dynamic properties of skyrmions, identifying the excitation conditions for both the breathing mode and the spin wave mode. Additionally, we clarified the relationship among spin wave intensity, DMI coefficient, and frequency. Finally, we validated the theoretical predictions of the spin wave excitation in this structure through micromagnetic simulations. This work points the way toward developing ultrahigh frequency, low-power, and highly stable spin wave generators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自旋波具有高速、低能耗的信息传输和编码能力。其核心部件自旋波发生器目前面临着高能耗和集成困难的挑战。本研究提出了一种基于铁电/铁磁异质结构的自旋波发生器。这种发生器利用电场控制 Dzyaloshinskii-Moriya 相互作用(DMI),调节磁拓扑态(如天幕)的动力学,从而实现低功耗激发自旋波。首先,我们进行了理论分析,研究了振荡压控 DMI 对天幕动态特性的影响,确定了呼吸模式和自旋波模式的激发条件。此外,我们还阐明了自旋波强度、DMI 系数和频率之间的关系。最后,我们通过微磁模拟验证了该结构中自旋波激发的理论预测。这项工作为开发超高频、低功耗和高度稳定的自旋波发生器指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Issue Editorial Masthead Issue Publication Information A Macrocycle-Assisted Platform Approach to Protein Cross-Linking Via Chemically Inactive Residues. Heterostructure Nanoscintillator for Matching Radiation Absorbing Layers with Fast Light-Emitting Layers. Metastable Phase Noble-Metal-Free Core-Shell Structure for Efficient Electrocatalytic Nitrobenzene Transfer Hydrogenation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1