Design and Synthesis of Mycophenolic Acid Analogues for Osteosarcoma Cancer Treatment

IF 3.8 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Bio & Med Chem Au Pub Date : 2024-10-17 DOI:10.1021/acsbiomedchemau.4c0007910.1021/acsbiomedchemau.4c00079
Patamawadee Silalai, Pimpisa Teeyakasem, Dumnoensun Pruksakorn* and Rungnapha Saeeng*, 
{"title":"Design and Synthesis of Mycophenolic Acid Analogues for Osteosarcoma Cancer Treatment","authors":"Patamawadee Silalai,&nbsp;Pimpisa Teeyakasem,&nbsp;Dumnoensun Pruksakorn* and Rungnapha Saeeng*,&nbsp;","doi":"10.1021/acsbiomedchemau.4c0007910.1021/acsbiomedchemau.4c00079","DOIUrl":null,"url":null,"abstract":"<p >Mycophenolic acid (MPA), a natural compound, was modified to new MPA analogues via the classical method of silylation and esterification. Their cytotoxicity was evaluated in vitro on four osteosarcoma cancer cell lines (MNNG/HOS, U2OS, 143B, and SaOS-2) and human normal cells (hFOB 1.19). The most potent silicon-containing compound <b>2d</b> (R<sup>1</sup> = TPS, R<sup>2</sup> = H) exhibited good cytotoxic activity against all osteosarcoma cancer cell lines with IC<sub>50</sub> values ranging from 0.64 to 2.27 μM and showing low cytotoxicity against normal cells. Further investigations revealed that compound <b>2d</b> (R<sup>1</sup> = TPS, R<sup>2</sup> = H) displayed significant inhibition of IMPDH2 with <i>K</i><sub>i</sub><sub>app</sub> 1.8 μM. Furthermore, molecular modeling studies were performed to investigate the binding affinity of <b>2d</b> (R<sup>1</sup> = TPS, R<sup>2</sup> = H) which can effectively bind to critical amino acids of three proteins (vascular endothelial growth factor receptor 2; VEGFR-2, cyclin-dependent kinase 2; CDK2, inosine-5′-monophosphate dehydrogenase; IMPDH) involved in cancer therapy. This finding suggests that triphenylsilyl-MPA (TPS-MPA) analogue could serve as a promising starting point for developing new anticancer drugs for osteosarcoma.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 1","pages":"106–118 106–118"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.4c00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycophenolic acid (MPA), a natural compound, was modified to new MPA analogues via the classical method of silylation and esterification. Their cytotoxicity was evaluated in vitro on four osteosarcoma cancer cell lines (MNNG/HOS, U2OS, 143B, and SaOS-2) and human normal cells (hFOB 1.19). The most potent silicon-containing compound 2d (R1 = TPS, R2 = H) exhibited good cytotoxic activity against all osteosarcoma cancer cell lines with IC50 values ranging from 0.64 to 2.27 μM and showing low cytotoxicity against normal cells. Further investigations revealed that compound 2d (R1 = TPS, R2 = H) displayed significant inhibition of IMPDH2 with Kiapp 1.8 μM. Furthermore, molecular modeling studies were performed to investigate the binding affinity of 2d (R1 = TPS, R2 = H) which can effectively bind to critical amino acids of three proteins (vascular endothelial growth factor receptor 2; VEGFR-2, cyclin-dependent kinase 2; CDK2, inosine-5′-monophosphate dehydrogenase; IMPDH) involved in cancer therapy. This finding suggests that triphenylsilyl-MPA (TPS-MPA) analogue could serve as a promising starting point for developing new anticancer drugs for osteosarcoma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Bio & Med Chem Au
ACS Bio & Med Chem Au 药物、生物、化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.
期刊最新文献
Issue Editorial Masthead Issue Publication Information A Reverse Transcription Nucleic-Acid-Based Barcoding System for In Vivo Measurement of Lipid Nanoparticle mRNA Delivery A Reverse Transcription Nucleic-Acid-Based Barcoding System for In Vivo Measurement of Lipid Nanoparticle mRNA Delivery. Antimicrobial Efficacy of 1,2,3-Triazole-Incorporated Indole-Pyrazolone against Drug-Resistant ESKAPE Pathogens: Design and Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1