Geostationary ocean color satellite observations reveal the fine structure of mesoscale eddy dynamics

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2025-02-18 DOI:10.1016/j.rse.2025.114652
Xiaosong Ding , Xianqiang He , Yan Bai , Wentao Ma , Jiajia Li , Feng Ye , Shujie Yu , Qiwei Hu , Fang Gong , Difeng Wang , Teng Li
{"title":"Geostationary ocean color satellite observations reveal the fine structure of mesoscale eddy dynamics","authors":"Xiaosong Ding ,&nbsp;Xianqiang He ,&nbsp;Yan Bai ,&nbsp;Wentao Ma ,&nbsp;Jiajia Li ,&nbsp;Feng Ye ,&nbsp;Shujie Yu ,&nbsp;Qiwei Hu ,&nbsp;Fang Gong ,&nbsp;Difeng Wang ,&nbsp;Teng Li","doi":"10.1016/j.rse.2025.114652","DOIUrl":null,"url":null,"abstract":"<div><div>Observations of mesoscale eddy structures rely heavily on satellite altimetry data. However, due to altimetry's coarse spatial resolution, the fine structure of eddy dynamics remains mysterious. Using high spatiotemporal resolution observations from the Geostationary Ocean Color Imager (GOCI), we reveal the fine structure and hourly dynamics of the eddy surface flow velocities, as well as the horizontal eddy transport processes. The sea surface flow field retrieved by the dense optical flow algorithm from the GOCI was consistent with the results derived from satellite altimetry data but had a much higher spatial resolution (500 m), which makes it feasible to capture the fine structure of eddy dynamics. Additionally, the hourly observations exposed rapid variations of the eddy kinetic energy and the horizontal advection transport of surface phytoplankton. These fine-scale and frequent GOCI observations increase the understanding of the dynamics and mass transport in mesoscale eddies.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"320 ","pages":"Article 114652"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725000562","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Observations of mesoscale eddy structures rely heavily on satellite altimetry data. However, due to altimetry's coarse spatial resolution, the fine structure of eddy dynamics remains mysterious. Using high spatiotemporal resolution observations from the Geostationary Ocean Color Imager (GOCI), we reveal the fine structure and hourly dynamics of the eddy surface flow velocities, as well as the horizontal eddy transport processes. The sea surface flow field retrieved by the dense optical flow algorithm from the GOCI was consistent with the results derived from satellite altimetry data but had a much higher spatial resolution (500 m), which makes it feasible to capture the fine structure of eddy dynamics. Additionally, the hourly observations exposed rapid variations of the eddy kinetic energy and the horizontal advection transport of surface phytoplankton. These fine-scale and frequent GOCI observations increase the understanding of the dynamics and mass transport in mesoscale eddies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Using Landsat 8 and 9 operational land imager (OLI) data to characterize geometric distortion and improve geometric correction of Landsat Multispectral Scanner (MSS) imagery A novel GSM and fluorescence coupled full-spectral chlorophyll a algorithm for waters with high CDM content Editorial Board Comparison of correction methods for bidirectional effects in ocean colour remote sensing First quasi-global soil moisture retrieval using Fengyun-3 GNSS-R constellation observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1