Hyperbox Mixture Regression for process performance prediction in antibody production

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2025-02-15 DOI:10.1016/j.dche.2025.100221
Ali Nik-Khorasani , Thanh Tung Khuat , Bogdan Gabrys
{"title":"Hyperbox Mixture Regression for process performance prediction in antibody production","authors":"Ali Nik-Khorasani ,&nbsp;Thanh Tung Khuat ,&nbsp;Bogdan Gabrys","doi":"10.1016/j.dche.2025.100221","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenges of predicting bioprocess performance, particularly in monoclonal antibody (mAb) production, where conventional statistical methods often fall short due to time-series data’s complexity and high dimensionality. We propose a novel Hyperbox Mixture Regression (HMR) model that employs hyperbox-based input space partitioning to enhance predictive accuracy while managing uncertainty inherent in bioprocess data. The HMR model is designed to dynamically generate hyperboxes for input samples in a single-pass process, thereby improving learning speed and reducing computational complexity. Our experimental study utilizes a dataset that contains 106 bioreactors. This study evaluates the model’s performance in predicting critical quality attributes in monoclonal antibody manufacturing over a 15-day cultivation period. The results demonstrate that the HMR model outperforms comparable approximators in accuracy and learning speed and maintains interpretability and robustness under uncertain conditions. These findings underscore the potential of HMR as a powerful tool for enhancing predictive analytics in bioprocessing applications.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100221"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenges of predicting bioprocess performance, particularly in monoclonal antibody (mAb) production, where conventional statistical methods often fall short due to time-series data’s complexity and high dimensionality. We propose a novel Hyperbox Mixture Regression (HMR) model that employs hyperbox-based input space partitioning to enhance predictive accuracy while managing uncertainty inherent in bioprocess data. The HMR model is designed to dynamically generate hyperboxes for input samples in a single-pass process, thereby improving learning speed and reducing computational complexity. Our experimental study utilizes a dataset that contains 106 bioreactors. This study evaluates the model’s performance in predicting critical quality attributes in monoclonal antibody manufacturing over a 15-day cultivation period. The results demonstrate that the HMR model outperforms comparable approximators in accuracy and learning speed and maintains interpretability and robustness under uncertain conditions. These findings underscore the potential of HMR as a powerful tool for enhancing predictive analytics in bioprocessing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Surrogate-based flowsheet model maintenance for Digital Twins Real-time process safety and systems decision-making toward safe and smart chemical manufacturing Assessment of forward and forward–backward Bayesian filters Operability for process flowsheet analysis Classifier surrogates to ensure phase stability in optimisation-based design of solvent mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1