Experimental investigation on the effect of sealing speed on mine roadway fire behavior with longitudinal ventilation

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2025-02-19 DOI:10.1016/j.tust.2025.106494
Ruizhi Guo, Jun Deng, Li Ma, Jing Fan, Gaoming Wei, Wenbo Gao
{"title":"Experimental investigation on the effect of sealing speed on mine roadway fire behavior with longitudinal ventilation","authors":"Ruizhi Guo,&nbsp;Jun Deng,&nbsp;Li Ma,&nbsp;Jing Fan,&nbsp;Gaoming Wei,&nbsp;Wenbo Gao","doi":"10.1016/j.tust.2025.106494","DOIUrl":null,"url":null,"abstract":"<div><div>Sealing both ends of the fire source is an effective method for controlling roadway fires. To better understand the impact of the sealing speed on the fire behavior of longitudinal ventilation roadway, a dynamic sealing method was proposed. A series of 1/10 scaled experiments were conducted at four different sealing speeds, and the variations in flame shape, mass loss rate (MLR), self-extinction time, smoke component concentrations near the fire source, and the ceiling temperature directly above the fire source (<em>T</em><sub>c</sub>) were investigated. The results indicate that in the early stage, the flame exhibits a significant downstream tilt, which gradually decreases as the sealing ratio increases. The time from ignition to self-extinction (<em>t</em><sub>1</sub>) shows a monotonically increasing linear relationship with sealing speed, and there is an overall decreasing trend between the time from complete sealing to self-extinction (<em>t</em><sub>2</sub>) and sealing speed. For oil pan sizes of 12.8 cm × 12.8 cm and 18.1 cm × 18.1 cm, the fuel MLR exhibits “single peak” and “double peaks” trends, and the concentrations of O<sub>2</sub> and CO almost reach the peak values at the same time. The limit oxygen concentrations corresponding to self-extinction are 15.2 %–15.5 % and 13.3 %–13.8 %, respectively, and the impact of sealing speed on the limit oxygen concentration, CO concentration and maximum <em>T</em><sub>c</sub> is not significant. Additionally, when the oil pan size is large, the slow sealing speeds may lead to fuel boiling overflow, which is detrimental to fire extinguishing. This study provides guidance for fire risk assessment during the mine roadway fire sealing process and contributes to the scientific development of sealing strategies.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"159 ","pages":"Article 106494"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825001324","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sealing both ends of the fire source is an effective method for controlling roadway fires. To better understand the impact of the sealing speed on the fire behavior of longitudinal ventilation roadway, a dynamic sealing method was proposed. A series of 1/10 scaled experiments were conducted at four different sealing speeds, and the variations in flame shape, mass loss rate (MLR), self-extinction time, smoke component concentrations near the fire source, and the ceiling temperature directly above the fire source (Tc) were investigated. The results indicate that in the early stage, the flame exhibits a significant downstream tilt, which gradually decreases as the sealing ratio increases. The time from ignition to self-extinction (t1) shows a monotonically increasing linear relationship with sealing speed, and there is an overall decreasing trend between the time from complete sealing to self-extinction (t2) and sealing speed. For oil pan sizes of 12.8 cm × 12.8 cm and 18.1 cm × 18.1 cm, the fuel MLR exhibits “single peak” and “double peaks” trends, and the concentrations of O2 and CO almost reach the peak values at the same time. The limit oxygen concentrations corresponding to self-extinction are 15.2 %–15.5 % and 13.3 %–13.8 %, respectively, and the impact of sealing speed on the limit oxygen concentration, CO concentration and maximum Tc is not significant. Additionally, when the oil pan size is large, the slow sealing speeds may lead to fuel boiling overflow, which is detrimental to fire extinguishing. This study provides guidance for fire risk assessment during the mine roadway fire sealing process and contributes to the scientific development of sealing strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Damage mechanism of tunnel base heave under interlayer weakening effect in nearly horizontal layered rock Experimental investigation on the effect of sealing speed on mine roadway fire behavior with longitudinal ventilation A modified domain reduction method for analysing the 3D seismic response of long tunnels A systematic review on underground logistics system: designs, impacts, and future directions Development and application of air-assisted spraying device for dust suppression on tunnel boring machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1