Jie Liu , Zhigui He , Xian Qin , Kun Zhang , Kai Qu , Yuan Zhong , Weihu Yang , Wei Wu
{"title":"Macrophage membrane enveloped on double-locked nanoplatform with right-side-out orientation to improving precise theranostic for atherosclerosis","authors":"Jie Liu , Zhigui He , Xian Qin , Kun Zhang , Kai Qu , Yuan Zhong , Weihu Yang , Wei Wu","doi":"10.1016/j.jconrel.2025.02.034","DOIUrl":null,"url":null,"abstract":"<div><div>A right-side-out orientated self-assembly of cell membrane-camouflaged theranostic nanoplatform is crucial for ensuring their biological functionality inherited from the source cells. However, the low specificity and fluorescence background interference hampered reliable assessment of lipids content in plaques. In this work, a spontaneous right-side-out coupling-driven ROS-responsive theranostic nanoplatform has been developed to enhance accumulation within atherosclerotic plaques, target lipids imaging in plaques, reduce the interference from background fluorescence and inhibit the progression of atherosclerosis (AS). A ROS-responsive lipid-unlocked fluorescent probe is constructed, followed by loading rapamycin (RAP) for safe and efficient AS therapy. Moreover, the theranostic nanoplatform is functionalized with PS-targeted peptide for binding to phosphatidylserine located on the inner leaflet of the macrophage membrane, harvesting a right-side-out-orientated coating theranostics formulation (M-TPCR) for the reliable imaging of lipids in lipids-sufficient Hela cells, foam cells and atherosclerotic plaques while keeping in fluorescence off in lipid-deficient environments, such as M0 macrophages, M1 macrophages and blood. Most importantly, the FL signals of M-TPCR are positively correlated with lipid content across foam cells, isolated aorta or aortic root sections, confirming its reliability in indicating plaques. Hence, M-TPCR provides a powerful approach for developing the biomimetic cell membrane camouflaged nanotechnology and delivers an impressive potential on the therapeutic efficacy monitoring.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"380 ","pages":"Pages 800-817"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925001476","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A right-side-out orientated self-assembly of cell membrane-camouflaged theranostic nanoplatform is crucial for ensuring their biological functionality inherited from the source cells. However, the low specificity and fluorescence background interference hampered reliable assessment of lipids content in plaques. In this work, a spontaneous right-side-out coupling-driven ROS-responsive theranostic nanoplatform has been developed to enhance accumulation within atherosclerotic plaques, target lipids imaging in plaques, reduce the interference from background fluorescence and inhibit the progression of atherosclerosis (AS). A ROS-responsive lipid-unlocked fluorescent probe is constructed, followed by loading rapamycin (RAP) for safe and efficient AS therapy. Moreover, the theranostic nanoplatform is functionalized with PS-targeted peptide for binding to phosphatidylserine located on the inner leaflet of the macrophage membrane, harvesting a right-side-out-orientated coating theranostics formulation (M-TPCR) for the reliable imaging of lipids in lipids-sufficient Hela cells, foam cells and atherosclerotic plaques while keeping in fluorescence off in lipid-deficient environments, such as M0 macrophages, M1 macrophages and blood. Most importantly, the FL signals of M-TPCR are positively correlated with lipid content across foam cells, isolated aorta or aortic root sections, confirming its reliability in indicating plaques. Hence, M-TPCR provides a powerful approach for developing the biomimetic cell membrane camouflaged nanotechnology and delivers an impressive potential on the therapeutic efficacy monitoring.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.