Mayukh R. Gangopadhyay , Nilanjana Kumar , Ankan Mukherjee , Mohit K. Sharma
{"title":"Composite pseudo Nambu Goldstone quintessence","authors":"Mayukh R. Gangopadhyay , Nilanjana Kumar , Ankan Mukherjee , Mohit K. Sharma","doi":"10.1016/j.newast.2025.102373","DOIUrl":null,"url":null,"abstract":"<div><div>A pseudo-Nambu Goldstone Boson (pNGB) arising from the breaking of a global symmetry (<span><math><mrow><mi>G</mi><mo>→</mo><mi>H</mi></mrow></math></span>) can be one of the most promising candidate for the quintessence model, to explain the late time acceleration of our universe. Motivated from the Composite Higgs scenario, we have investigated the case where the pNGB associated with <span><math><mrow><mi>S</mi><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mo>/</mo><mi>S</mi><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> develops a potential through its couplings with the particles that do not form the complete representations of <span><math><mi>G</mi></math></span>. The Coleman Weinberg (CW) potential is generated via the external particles in the loop which are linked with the strongly interacting dynamics and can be computed predicatively.</div><div>The model of Dark Energy (DE) is tested against several latest cosmological observations such as supernovae data of Pantheon, Baryon Acoustic Oscillation (BAO), Redshift-space distortion (RSD) data etc. We have found that the fit prefers sub-Planckian value of the pNGB field decay constant. Moreover, we have found that the model predicts cosmological parameters well within the allowed range of the observation and thus gives a well motivated model of quintessence.</div></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"118 ","pages":"Article 102373"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107625000223","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A pseudo-Nambu Goldstone Boson (pNGB) arising from the breaking of a global symmetry () can be one of the most promising candidate for the quintessence model, to explain the late time acceleration of our universe. Motivated from the Composite Higgs scenario, we have investigated the case where the pNGB associated with develops a potential through its couplings with the particles that do not form the complete representations of . The Coleman Weinberg (CW) potential is generated via the external particles in the loop which are linked with the strongly interacting dynamics and can be computed predicatively.
The model of Dark Energy (DE) is tested against several latest cosmological observations such as supernovae data of Pantheon, Baryon Acoustic Oscillation (BAO), Redshift-space distortion (RSD) data etc. We have found that the fit prefers sub-Planckian value of the pNGB field decay constant. Moreover, we have found that the model predicts cosmological parameters well within the allowed range of the observation and thus gives a well motivated model of quintessence.
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.