{"title":"An efficient approach for diagnosing faults in photovoltaic array using 1D-CNN and feature selection Techniques","authors":"Yousif Mahmoud Ali , Lei Ding , Shiyao Qin","doi":"10.1016/j.ijepes.2025.110526","DOIUrl":null,"url":null,"abstract":"<div><div>Diagnosing faults in Photovoltaic (PV) systems is essential for operation and maintenance. Selecting relevant features is necessary for successful fault diagnosis because redundant and irrelevant features reduce fault diagnosing accuracy. This paper proposes a novel and efficient approach to diagnosing faults in PV systems. The Feature Selection and Fault Diagnosis (FSFD) method is executed for diagnosing five types of faults in PV array (PVA): partial shading condition, line-line fault, arc fault, open-circuit fault, and degradation fault. Firstly, a PVA modeling method using MATLAB/Simulink is employed to simulate I-V curves and extract their features. Next, a feature permutation technique-based method is proposed for selecting the most relevant features. A simple and accurate one-dimensional convolutional neural network (1D-CNN) model is developed to classify the faults based on the selected features. Finally, a confusion matrix is utilized to evaluate the performance of the trained model. Three datasets of PVAs have been utilized to evaluate the effectiveness of the proposed FSFD method. The results indicate that the FSFD method has effectively identified the best five features out of eight for training the 1D-CNN model. The trained model has achieved diagnosing accuracy rates of 99.85%, 99.73%, and 99.97% in series–parallel PVA, total cross-tied PVA, and series PVA datasets, respectively. The proposed method accurately diagnoses single faults in three PVA configurations. Therefore, we recommend conducting additional studies to improve the proposed method for diagnosing hybrid faults.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110526"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000778","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Diagnosing faults in Photovoltaic (PV) systems is essential for operation and maintenance. Selecting relevant features is necessary for successful fault diagnosis because redundant and irrelevant features reduce fault diagnosing accuracy. This paper proposes a novel and efficient approach to diagnosing faults in PV systems. The Feature Selection and Fault Diagnosis (FSFD) method is executed for diagnosing five types of faults in PV array (PVA): partial shading condition, line-line fault, arc fault, open-circuit fault, and degradation fault. Firstly, a PVA modeling method using MATLAB/Simulink is employed to simulate I-V curves and extract their features. Next, a feature permutation technique-based method is proposed for selecting the most relevant features. A simple and accurate one-dimensional convolutional neural network (1D-CNN) model is developed to classify the faults based on the selected features. Finally, a confusion matrix is utilized to evaluate the performance of the trained model. Three datasets of PVAs have been utilized to evaluate the effectiveness of the proposed FSFD method. The results indicate that the FSFD method has effectively identified the best five features out of eight for training the 1D-CNN model. The trained model has achieved diagnosing accuracy rates of 99.85%, 99.73%, and 99.97% in series–parallel PVA, total cross-tied PVA, and series PVA datasets, respectively. The proposed method accurately diagnoses single faults in three PVA configurations. Therefore, we recommend conducting additional studies to improve the proposed method for diagnosing hybrid faults.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.