Study on the mechanism of horizontally striped contamination distribution along the surface of dry-type transformers and its influence on electric field characteristics

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2025-02-18 DOI:10.1016/j.ijepes.2025.110542
Xinhan Qiao , Wei Li , Yue Ming , Zishang Zhu , Wentian Zeng , Yijiao Wang
{"title":"Study on the mechanism of horizontally striped contamination distribution along the surface of dry-type transformers and its influence on electric field characteristics","authors":"Xinhan Qiao ,&nbsp;Wei Li ,&nbsp;Yue Ming ,&nbsp;Zishang Zhu ,&nbsp;Wentian Zeng ,&nbsp;Yijiao Wang","doi":"10.1016/j.ijepes.2025.110542","DOIUrl":null,"url":null,"abstract":"<div><div>Dry-type transformers have the advantages of strong anti-short circuit ability, low maintenance workload, and low noise. They are commonly used in places with high performance requirements for fire and explosion prevention. However, due to the direct exposure of its insulation material to air, surface discharge in specific environments poses a threat to the safe operation of transformers. This paper observed a special contamination distribution of “horizontally striped contamination on the surface of high-voltage windings” in engineering practice, and discovered a corresponding new phenomenon of “surface discharge along a circular path”. Therefore, this paper systematically studied this special phenomenon through finite element and micro mechanical analysis. This paper found that a specific winding connection sequence can lead to a larger local electric field. The electric field force exerted on contaminated particles after being charged is the main reason for the formation of “horizontally striped contamination”. The “horizontally striped contamination” further leads to an increase in electric field, ultimately forming a new phenomenon of “surface discharge along a circular path”. In addition, wet contamination can create dry areas, and wet contamination with dry areas can cause more severe distortion of the electric field on the surface of transformers. The surface electric field of wet inorganic salt contamination with dry areas is the most severely distorted. The maximum electric field strength can reach 3.6562 kV/cm. Compared to the maximum electric field strength of 1.1581 kV/cm without pollution, it increases by 215.71 %. The research results of this paper can provide theoretical basis for the optimization design of winding structure of dry-type transformers in polluted regions.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110542"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000936","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Dry-type transformers have the advantages of strong anti-short circuit ability, low maintenance workload, and low noise. They are commonly used in places with high performance requirements for fire and explosion prevention. However, due to the direct exposure of its insulation material to air, surface discharge in specific environments poses a threat to the safe operation of transformers. This paper observed a special contamination distribution of “horizontally striped contamination on the surface of high-voltage windings” in engineering practice, and discovered a corresponding new phenomenon of “surface discharge along a circular path”. Therefore, this paper systematically studied this special phenomenon through finite element and micro mechanical analysis. This paper found that a specific winding connection sequence can lead to a larger local electric field. The electric field force exerted on contaminated particles after being charged is the main reason for the formation of “horizontally striped contamination”. The “horizontally striped contamination” further leads to an increase in electric field, ultimately forming a new phenomenon of “surface discharge along a circular path”. In addition, wet contamination can create dry areas, and wet contamination with dry areas can cause more severe distortion of the electric field on the surface of transformers. The surface electric field of wet inorganic salt contamination with dry areas is the most severely distorted. The maximum electric field strength can reach 3.6562 kV/cm. Compared to the maximum electric field strength of 1.1581 kV/cm without pollution, it increases by 215.71 %. The research results of this paper can provide theoretical basis for the optimization design of winding structure of dry-type transformers in polluted regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
Investment decisions in a liberalised energy market with generation and hydrogen-based vector coupling storage in Integrated Energy System: A game-theoretic model-based approach Grid frequency disturbance analysis based virtual synchronous generator transient performance improvement control A self-adaptive modified backward forward sweep method: Application to dynamic flow direction changes Advancing scenario generation in large-scale clean energy bases via enhanced hyperparameter optimization techniques TFTformer: A novel transformer based model for short-term load forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1