Vladimir Bilek , Jan Barta , Marek Toman , Petr Losak , Gerd Bramerdorfer
{"title":"A comprehensive overview of high-speed solid-rotor induction machines: Applications, classification, and multi-physics modeling","authors":"Vladimir Bilek , Jan Barta , Marek Toman , Petr Losak , Gerd Bramerdorfer","doi":"10.1016/j.ijepes.2025.110520","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-rotor induction machines have gained significant attention in various industrial applications due to their robustness, reliability, and cost-effectiveness. This paper presents a comprehensive overview of these machines, covering their classification and various applications. The paper starts with discussing the widespread usage of solid-rotor induction machines in numerous industry sectors, including manufacturing, transportation, and renewable energy generation. The ability to operate under harsh environmental conditions and in safety-critical settings has made these machines indispensable in many fields of engineering. Their detailed classification based on different rotor topologies is provided, highlighting the unique design features and performance characteristics of each category. Simple and hybrid configurations and their distinct advantages and limitations in specific applications are included. This paper further explores the essential aspects of multi-physics modeling of solid-rotor induction machines, incorporating electromagnetic, mechanical, and thermal considerations to gain deep insights into the complex interactions between components and to guide the optimization process for enhanced performance and efficiency. This work is intended as a valuable reference for researchers and engineers seeking a comprehensive understanding of solid-rotor induction machines, from their diverse applications to the intricacies of their electromagnetic, thermal, and mechanical modeling. By shedding light on these aspects, this work contributes to the advancement and utilization uptake of these machines in modern industrial settings.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110520"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-rotor induction machines have gained significant attention in various industrial applications due to their robustness, reliability, and cost-effectiveness. This paper presents a comprehensive overview of these machines, covering their classification and various applications. The paper starts with discussing the widespread usage of solid-rotor induction machines in numerous industry sectors, including manufacturing, transportation, and renewable energy generation. The ability to operate under harsh environmental conditions and in safety-critical settings has made these machines indispensable in many fields of engineering. Their detailed classification based on different rotor topologies is provided, highlighting the unique design features and performance characteristics of each category. Simple and hybrid configurations and their distinct advantages and limitations in specific applications are included. This paper further explores the essential aspects of multi-physics modeling of solid-rotor induction machines, incorporating electromagnetic, mechanical, and thermal considerations to gain deep insights into the complex interactions between components and to guide the optimization process for enhanced performance and efficiency. This work is intended as a valuable reference for researchers and engineers seeking a comprehensive understanding of solid-rotor induction machines, from their diverse applications to the intricacies of their electromagnetic, thermal, and mechanical modeling. By shedding light on these aspects, this work contributes to the advancement and utilization uptake of these machines in modern industrial settings.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.