Emerging Frontiers in acute kidney injury: The role of extracellular vesicles

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL Bioactive Materials Pub Date : 2025-02-18 DOI:10.1016/j.bioactmat.2025.02.018
Sirui Li , Lan Zhou , Yu Huang , Shupei Tang
{"title":"Emerging Frontiers in acute kidney injury: The role of extracellular vesicles","authors":"Sirui Li ,&nbsp;Lan Zhou ,&nbsp;Yu Huang ,&nbsp;Shupei Tang","doi":"10.1016/j.bioactmat.2025.02.018","DOIUrl":null,"url":null,"abstract":"<div><div>Acute kidney injury (AKI) remains a prevalent and critical clinical condition. Although considerable advancements have been achieved in clinical and fundamental research in recent decades, the enhancements in AKI diagnosis and therapeutic approaches, such as the development of emerging biomarkers including neutrophil gelatinase-associated lipocalin (NGAL) and liver fatty acid-binding protein (FABP1) for early detection of AKI and the exploration of “goal-directed\" hemodynamic treatment methods and renal replacement therapies, have yet to fulfill the demands of modern medicine. Extracellular vesicles (EVs) serve as pivotal messengers in cell-to-cell communication, exerting a vital impact on both physiological and pathological processes. They exhibit immense potential as disease regulators, innovative biomarkers, therapeutic agents, and drug delivery vehicles. In recent times, the diagnostic and therapeutic potential of EVs in AKI has garnered widespread recognition and exploration, making them a focal point in clinical research. Consequently, a comprehensive overview of EVs' role in AKI is of great importance. This review delves into the multifaceted roles of EVs from diverse cellular sources, including tubular epithelial cells (TECs), mesenchymal stem cells (MSCs), progenitor cells, platelets and macrophages, within the context of AKI. It scrutinizes their contributions to disease progression and mitigation, their diagnostic marker potential, and encompasses a variety of conventional and novel EVs extraction techniques suitable for AKI clinical applications. Moreover, it underscores four innovative strategies for engineering EVs to boost production efficiency, targeting precision, circulatory stability and therapeutic potency. These advancements pave the way for novel approaches in the diagnosis and treatment of AKI. We are optimistic that as research into EVs progresses, the future will bring about earlier detection, more tailored treatments, and a more holistic management of AKI.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 149-170"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000660","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute kidney injury (AKI) remains a prevalent and critical clinical condition. Although considerable advancements have been achieved in clinical and fundamental research in recent decades, the enhancements in AKI diagnosis and therapeutic approaches, such as the development of emerging biomarkers including neutrophil gelatinase-associated lipocalin (NGAL) and liver fatty acid-binding protein (FABP1) for early detection of AKI and the exploration of “goal-directed" hemodynamic treatment methods and renal replacement therapies, have yet to fulfill the demands of modern medicine. Extracellular vesicles (EVs) serve as pivotal messengers in cell-to-cell communication, exerting a vital impact on both physiological and pathological processes. They exhibit immense potential as disease regulators, innovative biomarkers, therapeutic agents, and drug delivery vehicles. In recent times, the diagnostic and therapeutic potential of EVs in AKI has garnered widespread recognition and exploration, making them a focal point in clinical research. Consequently, a comprehensive overview of EVs' role in AKI is of great importance. This review delves into the multifaceted roles of EVs from diverse cellular sources, including tubular epithelial cells (TECs), mesenchymal stem cells (MSCs), progenitor cells, platelets and macrophages, within the context of AKI. It scrutinizes their contributions to disease progression and mitigation, their diagnostic marker potential, and encompasses a variety of conventional and novel EVs extraction techniques suitable for AKI clinical applications. Moreover, it underscores four innovative strategies for engineering EVs to boost production efficiency, targeting precision, circulatory stability and therapeutic potency. These advancements pave the way for novel approaches in the diagnosis and treatment of AKI. We are optimistic that as research into EVs progresses, the future will bring about earlier detection, more tailored treatments, and a more holistic management of AKI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
期刊最新文献
Microenvironment-responsive coating for vascular stents to regulate coagulation-inflammation interaction and promote vascular recovery Living joint prosthesis with in-situ tissue engineering for real-time and long-term osteoarticular reconstruction In situ UNIversal Orthogonal Network (UNION) bioink deposition for direct delivery of corneal stromal stem cells to corneal wounds Precision repair of zone-specific meniscal injuries using a tunable extracellular matrix-based hydrogel system 4D printing polymeric biomaterials for adaptive tissue regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1