Ju Young Lee , Taemin Kim , Shinil Cho , Jiho Shin , Woon-Hong Yeo , Tae Soo Kim , Ki Jun Yu
{"title":"Design considerations for optogenetic applications of soft micro-LED-based device systems across diverse nervous systems","authors":"Ju Young Lee , Taemin Kim , Shinil Cho , Jiho Shin , Woon-Hong Yeo , Tae Soo Kim , Ki Jun Yu","doi":"10.1016/j.bioactmat.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Optogenetics enables precise, cell-specific control of neural activity, surpassing traditional electrical stimulation methods that indiscriminately activate nearby cells, making it crucial for rehabilitation, neurological disorder treatment, and understanding neural circuits. Among light sources for delivering light to genetically modified cells, bio-implants integrated with Light Emitting Diodes (LEDs) have recently been the focus of extensive research due to their advantage of enabling local photogeneration. Unlike laser-based systems, which require tethered setups that hinder behavioral experiments, μ-LED-based devices allow for wireless operation, facilitating more natural movement in subjects. Furthermore, μ-LED arrays can be designed with higher spatial resolution compared to waveguide-coupled external light sources, enabling more precise control over neural activity. This paper presents design rules for implantable flexible optogenetic devices based on μ-LED, tailored to the unique anatomical and functional requirements of various regions of the nervous system. Integration of recent advancements in devices with μ-LEDs (e.g. wireless systems, optofluidic systems, multifunctionality, and closed-loop systems) enhances behavioral experiments and deepens understanding of complex neural functions in the brain, spinal cord, autonomic nervous system, and somatic nervous system. The combination of optogenetics with advanced bio-implantable devices offers promising avenues in medical science, providing more effective tools for neuromodulation research and clinical applications.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 217-241"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000544","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optogenetics enables precise, cell-specific control of neural activity, surpassing traditional electrical stimulation methods that indiscriminately activate nearby cells, making it crucial for rehabilitation, neurological disorder treatment, and understanding neural circuits. Among light sources for delivering light to genetically modified cells, bio-implants integrated with Light Emitting Diodes (LEDs) have recently been the focus of extensive research due to their advantage of enabling local photogeneration. Unlike laser-based systems, which require tethered setups that hinder behavioral experiments, μ-LED-based devices allow for wireless operation, facilitating more natural movement in subjects. Furthermore, μ-LED arrays can be designed with higher spatial resolution compared to waveguide-coupled external light sources, enabling more precise control over neural activity. This paper presents design rules for implantable flexible optogenetic devices based on μ-LED, tailored to the unique anatomical and functional requirements of various regions of the nervous system. Integration of recent advancements in devices with μ-LEDs (e.g. wireless systems, optofluidic systems, multifunctionality, and closed-loop systems) enhances behavioral experiments and deepens understanding of complex neural functions in the brain, spinal cord, autonomic nervous system, and somatic nervous system. The combination of optogenetics with advanced bio-implantable devices offers promising avenues in medical science, providing more effective tools for neuromodulation research and clinical applications.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.