Chao Peng , Mi Tian , Guangming Shi , Shumin Zhang , Xin Long , Hanxiong Che , Jie Zhong , Xiangyu You , Zhier Bao , Fumo Yang , Xin Qi , Chongzhi Zhai , Yang Chen
{"title":"Sources and light absorption of brown carbon in urban areas of the Sichuan Basin, China: Contribution from biomass burning and secondary formation","authors":"Chao Peng , Mi Tian , Guangming Shi , Shumin Zhang , Xin Long , Hanxiong Che , Jie Zhong , Xiangyu You , Zhier Bao , Fumo Yang , Xin Qi , Chongzhi Zhai , Yang Chen","doi":"10.1016/j.atmosres.2025.107992","DOIUrl":null,"url":null,"abstract":"<div><div>The optical properties of brown carbon (BrC) and their correlation with chemical characteristics remained inadequately understood in different regions worldwide. This study investigated the correlations and estimated the subsequent radiative effects using real-time measurements during wintertime in the Sichuan Basin, China. The average light absorption of BrC (Abs<sub>BrC</sub>) at 370 nm constituted 35.5 ± 8.2 % of total absorption, significantly higher than those at 470 nm (20.9 ± 4.3 %), 590 nm (14.0 ± 2.5 %), and 660 nm (7.7 ± 2.1 %) (<em>p</em> < 0.001). The contributions of various organic aerosol (OA) sources to Abs<sub>BrC</sub> varied by wavelength, with biomass-burning OA (BBOA) and semi-volatile oxygenated OA (SVOOA) exhibiting the higher Abs (14.4 Mm<sup>−1</sup> and 13.5 Mm<sup>−1</sup>), absorption Ångström exponents (AAE) (4.81 and 4.35), and contributions to Abs<sub>BrC</sub> (24.4 % and 22.8 %). Additionally, secondary BrC likely formed from BBOA through aqueous-phase reactions during winter. The transport of BBOA and SVOOA from northern regions (i.e., Guang'an in Sichuan and Hechuan in Chongqing) significantly contributed to elevated Abs<sub>370,BrC</sub> levels. The mean simple forcing efficiency for BrC (SFE<sub>BrC</sub>) was 60.5 W g<sup>−1</sup>, accounting for 14 % of SFE<sub>BC</sub> in the 370–880 nm range during winter. Overall, this study enhanced the understanding of Abs<sub>BrC</sub> and its evolution with sources, providing a more accurate assessment of its radiative effects, and emphasized the importance of biomass burning emissions.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"318 ","pages":"Article 107992"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525000845","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The optical properties of brown carbon (BrC) and their correlation with chemical characteristics remained inadequately understood in different regions worldwide. This study investigated the correlations and estimated the subsequent radiative effects using real-time measurements during wintertime in the Sichuan Basin, China. The average light absorption of BrC (AbsBrC) at 370 nm constituted 35.5 ± 8.2 % of total absorption, significantly higher than those at 470 nm (20.9 ± 4.3 %), 590 nm (14.0 ± 2.5 %), and 660 nm (7.7 ± 2.1 %) (p < 0.001). The contributions of various organic aerosol (OA) sources to AbsBrC varied by wavelength, with biomass-burning OA (BBOA) and semi-volatile oxygenated OA (SVOOA) exhibiting the higher Abs (14.4 Mm−1 and 13.5 Mm−1), absorption Ångström exponents (AAE) (4.81 and 4.35), and contributions to AbsBrC (24.4 % and 22.8 %). Additionally, secondary BrC likely formed from BBOA through aqueous-phase reactions during winter. The transport of BBOA and SVOOA from northern regions (i.e., Guang'an in Sichuan and Hechuan in Chongqing) significantly contributed to elevated Abs370,BrC levels. The mean simple forcing efficiency for BrC (SFEBrC) was 60.5 W g−1, accounting for 14 % of SFEBC in the 370–880 nm range during winter. Overall, this study enhanced the understanding of AbsBrC and its evolution with sources, providing a more accurate assessment of its radiative effects, and emphasized the importance of biomass burning emissions.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.