Samuel Perron , Claire S. Tully , Shivam Gupta , Matthew S. Fox , Dmitrij Zagidulin , James J. Noël , Alexei Ouriadov
{"title":"Implementation of the X-centric pulse sequence at low field for MRI of water penetration in clay","authors":"Samuel Perron , Claire S. Tully , Shivam Gupta , Matthew S. Fox , Dmitrij Zagidulin , James J. Noël , Alexei Ouriadov","doi":"10.1016/j.jmr.2025.107852","DOIUrl":null,"url":null,"abstract":"<div><div>Although the relaxation time constants of free water are relatively long, the relaxation of water in concrete and other sedimentary materials is significantly shorter. Dissolved ions and porous environments can cause increased magnetic susceptibility effects, leading to the apparent transverse relaxation time <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> of this water to decrease drastically, from seconds to less than a millisecond. The longer <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> of the low field regime (less than 0.5 T) should allow for 2D and even 3D imaging of water content in these types of materials; developing a suitable technique for imaging of short-<em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> samples would permit imaging of porous rocks and concrete.</div><div>A 12 mL wet bentonite clay sample was placed within a syringe and allowed to absorb increasing volumes of standing water. This progressing absorption was imaged on a 73.5 mT magnetic resonance imaging (MRI) system using the X-Centric pulse sequence. This pulse sequence is a modified version of the common gradient echo (GE) pulse sequence, in which each half of <em>k</em>-space is acquired separately, from the centre outwards in the readout direction, ensuring minimal <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup>-weighting of the resulting image and allowing for 2D imaging within the short time frame of the shorter <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> of water in the clay. Bulk relaxation measurements of <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> and the longitudinal relaxation time <em>T</em><sub><em>1</em></sub> were performed for increasing water content, with a mean <em>T</em><sub><em>1</em></sub> of 12.0 ± 1.1 ms and mean <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> of 4.5 ± 0.7 ms; 2D imaging of the clay sample was performed with both GE and X-Centric. In addition, a 2D <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> map was generated from eight X-Centric images taken at different echo times.</div><div>The X-Centric pulse sequence was demonstrated to be an effective imaging method for short signal-lifetime samples, such as water trapped in bentonite clay. The ease of implementation, minimal diffusion-weighting and <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup> weighting of the <em>k</em>-space centre, and considerable gains in signal-to-noise ratio and imaging efficiency position this pulse sequence as a viable alternative or complement to conventional GE acquisitions. Additionally, the short echo-time of the X-Centric pulse sequence allows it to be used effectively with non-proton MRI, including <sup>23</sup>Na and fluorinated gases (e.g., <sup>19</sup>F) where the <em>T</em><sub><em>2</em></sub><sup><em>⁎</em></sup>-decay is a potentially significant source of signal decay.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"373 ","pages":"Article 107852"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000242","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Although the relaxation time constants of free water are relatively long, the relaxation of water in concrete and other sedimentary materials is significantly shorter. Dissolved ions and porous environments can cause increased magnetic susceptibility effects, leading to the apparent transverse relaxation time T2⁎ of this water to decrease drastically, from seconds to less than a millisecond. The longer T2⁎ of the low field regime (less than 0.5 T) should allow for 2D and even 3D imaging of water content in these types of materials; developing a suitable technique for imaging of short-T2⁎ samples would permit imaging of porous rocks and concrete.
A 12 mL wet bentonite clay sample was placed within a syringe and allowed to absorb increasing volumes of standing water. This progressing absorption was imaged on a 73.5 mT magnetic resonance imaging (MRI) system using the X-Centric pulse sequence. This pulse sequence is a modified version of the common gradient echo (GE) pulse sequence, in which each half of k-space is acquired separately, from the centre outwards in the readout direction, ensuring minimal T2⁎-weighting of the resulting image and allowing for 2D imaging within the short time frame of the shorter T2⁎ of water in the clay. Bulk relaxation measurements of T2⁎ and the longitudinal relaxation time T1 were performed for increasing water content, with a mean T1 of 12.0 ± 1.1 ms and mean T2⁎ of 4.5 ± 0.7 ms; 2D imaging of the clay sample was performed with both GE and X-Centric. In addition, a 2D T2⁎ map was generated from eight X-Centric images taken at different echo times.
The X-Centric pulse sequence was demonstrated to be an effective imaging method for short signal-lifetime samples, such as water trapped in bentonite clay. The ease of implementation, minimal diffusion-weighting and T2⁎ weighting of the k-space centre, and considerable gains in signal-to-noise ratio and imaging efficiency position this pulse sequence as a viable alternative or complement to conventional GE acquisitions. Additionally, the short echo-time of the X-Centric pulse sequence allows it to be used effectively with non-proton MRI, including 23Na and fluorinated gases (e.g., 19F) where the T2⁎-decay is a potentially significant source of signal decay.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.