A theoretical investigation of the competition between σ- and π-holes on the stability of cyclic complexes resulting from the interaction between PO₂Cl and HSX molecules (X = F, Cl, Br, and I)

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL Computational and Theoretical Chemistry Pub Date : 2025-02-12 DOI:10.1016/j.comptc.2025.115142
Mohammadmehdi Moradkhani , Ali Naghipour , Yunes Abbasi Tyula , Yosra Moradkhani , Saeid Taghavi Fardood
{"title":"A theoretical investigation of the competition between σ- and π-holes on the stability of cyclic complexes resulting from the interaction between PO₂Cl and HSX molecules (X = F, Cl, Br, and I)","authors":"Mohammadmehdi Moradkhani ,&nbsp;Ali Naghipour ,&nbsp;Yunes Abbasi Tyula ,&nbsp;Yosra Moradkhani ,&nbsp;Saeid Taghavi Fardood","doi":"10.1016/j.comptc.2025.115142","DOIUrl":null,"url":null,"abstract":"<div><div>This research theoretically examined the interactions between PO₂Cl and HSX molecules (X = F, Cl, Br, I) at the MP2/aug-cc-pVTZ(PP) computational level. The MEP analysis showed that the PO₂Cl-C₂v symmetry had two π- and σ-hole regions contributing to the PnB and XB interactions, while the HSX molecules, with maximum potential regions on the H and S atoms participated in the HB-ChB interactions. Geometry optimization revealed three types of cyclic complexes: PnB -HB (Structure-I), ChB-ChB (Structure-II), and XB-XB (Structure-III). The interaction energy results demonstrated that structure-I complexes were the most stable, whereas structure-III complexes were the least stable. This stability could be attributed to the ability of π- and σ-holes to pull the electron cloud of electron-donating species toward themselves. The EDA analyses confirmed the key role of electrostatic and orbital interactions in the stability of the complexes. Various methods were used to thoroughly examine the properties of the complexes.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1246 ","pages":"Article 115142"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25000787","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research theoretically examined the interactions between PO₂Cl and HSX molecules (X = F, Cl, Br, I) at the MP2/aug-cc-pVTZ(PP) computational level. The MEP analysis showed that the PO₂Cl-C₂v symmetry had two π- and σ-hole regions contributing to the PnB and XB interactions, while the HSX molecules, with maximum potential regions on the H and S atoms participated in the HB-ChB interactions. Geometry optimization revealed three types of cyclic complexes: PnB -HB (Structure-I), ChB-ChB (Structure-II), and XB-XB (Structure-III). The interaction energy results demonstrated that structure-I complexes were the most stable, whereas structure-III complexes were the least stable. This stability could be attributed to the ability of π- and σ-holes to pull the electron cloud of electron-donating species toward themselves. The EDA analyses confirmed the key role of electrostatic and orbital interactions in the stability of the complexes. Various methods were used to thoroughly examine the properties of the complexes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
期刊最新文献
The role of quantum-confined boron nitride nanotubes in gas monitoring: Adsorption and detection of NO, NO₂, SO₂, and SO₃. DFT and Monte Carlo Study of Chalcone Compounds as Corrosion Inhibitors: Influence of Various Substituents (R = Cl, Br, CH3, OCH3, NH2, OH, N(CH3)2, H, COOH) Electron and positron impact ionization cross sections of neutral molecular species dissociating from C4F7N and its mixtures Bulkier anions versus hydrogen bonding in imidazolium ionic liquids: Stationary point analysis DFT analysis of dimethyl fumarate interactions with B12N12 and B24 nanoclusters for enhanced anticancer drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1