New Eigenvalue-Based Analysis for Precise Limit Cycle Stability Assessment in a Two-State Epileptor Model

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2025-01-06 DOI:10.1109/TSMC.2024.3517620
Samaneh-Alsadat Saeedinia;Mohammad-Reza Jahed-Motlagh;Nikola Kirilov Kasabov;Abbas Tafakhori
{"title":"New Eigenvalue-Based Analysis for Precise Limit Cycle Stability Assessment in a Two-State Epileptor Model","authors":"Samaneh-Alsadat Saeedinia;Mohammad-Reza Jahed-Motlagh;Nikola Kirilov Kasabov;Abbas Tafakhori","doi":"10.1109/TSMC.2024.3517620","DOIUrl":null,"url":null,"abstract":"The Epileptor model is a mathematical framework utilized for simulating the transition from interictal to ictal local field potential (LFP) activity in the brain, with the aim of predicting and preventing epileptic seizures. This article introduces a novel approach integrating Lyapunov and Poincaré–Bendixson methods to analyze the stability of limit cycles in nonlinear systems, specifically focusing on Epileptors with a two-state dynamic. Our method accurately delineates the limit cycle boundary through eigenvalue-based analysis, facilitating precise assessment of stability properties and identification of critical regions linked to seizure initiation and termination. Through the investigation of the two-state dynamics of Epileptors, we gain deeper insights into the transition between low activity and seizure states, consequently improving our understanding of epileptic seizures. Our approach can be employed to establish stability conditions and determine the existence of limit cycles in Epileptor models, which can further aid in predicting and preventing epileptic seizures by identifying critical regions associated with seizure initiation and termination. The simulations conducted in this study demonstrate that the model under investigation exhibits stable limit cycle behavior and manifests bifurcation, with significant implications for the development of targeted interventions and more effective prediction and treatments for epilepsy. The findings indicate that the suggested approach establishes that external stimulation should not surpass 10.8 mA. Moreover, the initial normal state lies within the range of −1.6 to −0.1 ictal LFP. On the other hand, the LaSalle and eigenvalue methods individually cannot precisely determine the limit cycle region.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"2062-2072"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10826579/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Epileptor model is a mathematical framework utilized for simulating the transition from interictal to ictal local field potential (LFP) activity in the brain, with the aim of predicting and preventing epileptic seizures. This article introduces a novel approach integrating Lyapunov and Poincaré–Bendixson methods to analyze the stability of limit cycles in nonlinear systems, specifically focusing on Epileptors with a two-state dynamic. Our method accurately delineates the limit cycle boundary through eigenvalue-based analysis, facilitating precise assessment of stability properties and identification of critical regions linked to seizure initiation and termination. Through the investigation of the two-state dynamics of Epileptors, we gain deeper insights into the transition between low activity and seizure states, consequently improving our understanding of epileptic seizures. Our approach can be employed to establish stability conditions and determine the existence of limit cycles in Epileptor models, which can further aid in predicting and preventing epileptic seizures by identifying critical regions associated with seizure initiation and termination. The simulations conducted in this study demonstrate that the model under investigation exhibits stable limit cycle behavior and manifests bifurcation, with significant implications for the development of targeted interventions and more effective prediction and treatments for epilepsy. The findings indicate that the suggested approach establishes that external stimulation should not surpass 10.8 mA. Moreover, the initial normal state lies within the range of −1.6 to −0.1 ictal LFP. On the other hand, the LaSalle and eigenvalue methods individually cannot precisely determine the limit cycle region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors TechRxiv: Share Your Preprint Research With the World! IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1