Degradability and remineralization of peat-derived terrestrial dissolved organic carbon in the Sunda Shelf Sea

IF 2 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Aquatic Sciences Pub Date : 2025-02-18 DOI:10.1007/s00027-025-01170-6
Yuan Chen, Moritz Müller, Alexander R. Cobb, Rahayu Sukmaria Sukri, Jens Zinke, R. Nagarajan, R. Sharveen, Abdulmajid Muhammad Ali, Patrick Martin
{"title":"Degradability and remineralization of peat-derived terrestrial dissolved organic carbon in the Sunda Shelf Sea","authors":"Yuan Chen,&nbsp;Moritz Müller,&nbsp;Alexander R. Cobb,&nbsp;Rahayu Sukmaria Sukri,&nbsp;Jens Zinke,&nbsp;R. Nagarajan,&nbsp;R. Sharveen,&nbsp;Abdulmajid Muhammad Ali,&nbsp;Patrick Martin","doi":"10.1007/s00027-025-01170-6","DOIUrl":null,"url":null,"abstract":"<div><p>The remineralization of terrestrial dissolved organic carbon (tDOC) plays an important role in coastal carbon and nutrient cycling, and can affect primary productivity and seawater pH. However, the fate of tDOC in the ocean remains poorly understood. Southeast Asia’s Sunda Shelf Sea receives around 10% of global tDOC input from peatland-draining rivers. Here, we performed photodegradation and long-term (2 months to 1.5 years) biodegradation experiments with samples from peatland-draining rivers and from peat tDOC-rich coastal water. We used the resulting photochemical and microbial decay rates to parameterize a 1-dimensional model simulation. This indicates that 24% and 23% of the initial tDOC entering the Sunda Shelf can be remineralized by pure photo- and pure biodegradation, respectively, after 2 years (which represents an upper limit of seawater residence time on the Sunda Shelf). We also show for the first time that the biodegradation rate of Southeast Asian peat tDOC is enhanced by prior photodegradation. Adding photo-enhanced biodegradation to our model simulation causes remineralization of an additional 16% of the initial tDOC. However, the contribution of photo-enhanced biodegradation was likely underestimated because the photo- and biodegradation steps were conducted successively in our experiments. Overall, our results suggest a notably higher contribution of photodegradation compared with other regions, owing to the combination of slow biodegradation, high solar irradiance, long water residence time on the shelf, and the photo-enhancement of the biodegradation rate. Our results are important for informing tDOC modeling studies, and highlight a need for further research on interactive photo–biodegradation of tDOC.</p></div>","PeriodicalId":55489,"journal":{"name":"Aquatic Sciences","volume":"87 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00027-025-01170-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The remineralization of terrestrial dissolved organic carbon (tDOC) plays an important role in coastal carbon and nutrient cycling, and can affect primary productivity and seawater pH. However, the fate of tDOC in the ocean remains poorly understood. Southeast Asia’s Sunda Shelf Sea receives around 10% of global tDOC input from peatland-draining rivers. Here, we performed photodegradation and long-term (2 months to 1.5 years) biodegradation experiments with samples from peatland-draining rivers and from peat tDOC-rich coastal water. We used the resulting photochemical and microbial decay rates to parameterize a 1-dimensional model simulation. This indicates that 24% and 23% of the initial tDOC entering the Sunda Shelf can be remineralized by pure photo- and pure biodegradation, respectively, after 2 years (which represents an upper limit of seawater residence time on the Sunda Shelf). We also show for the first time that the biodegradation rate of Southeast Asian peat tDOC is enhanced by prior photodegradation. Adding photo-enhanced biodegradation to our model simulation causes remineralization of an additional 16% of the initial tDOC. However, the contribution of photo-enhanced biodegradation was likely underestimated because the photo- and biodegradation steps were conducted successively in our experiments. Overall, our results suggest a notably higher contribution of photodegradation compared with other regions, owing to the combination of slow biodegradation, high solar irradiance, long water residence time on the shelf, and the photo-enhancement of the biodegradation rate. Our results are important for informing tDOC modeling studies, and highlight a need for further research on interactive photo–biodegradation of tDOC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Sciences
Aquatic Sciences 环境科学-海洋与淡水生物学
CiteScore
3.90
自引率
4.20%
发文量
60
审稿时长
1 months
期刊介绍: Aquatic Sciences – Research Across Boundaries publishes original research, overviews, and reviews dealing with aquatic systems (both freshwater and marine systems) and their boundaries, including the impact of human activities on these systems. The coverage ranges from molecular-level mechanistic studies to investigations at the whole ecosystem scale. Aquatic Sciences publishes articles presenting research across disciplinary and environmental boundaries, including studies examining interactions among geological, microbial, biological, chemical, physical, hydrological, and societal processes, as well as studies assessing land-water, air-water, benthic-pelagic, river-ocean, lentic-lotic, and groundwater-surface water interactions.
期刊最新文献
Assessing the distribution and habitat suitability of Austropotamobius pallipes complex in proximity of invasive Procambarus clarkii in the Avigliana Lakes (northwest Italy): an integrated approach to ecosystem health and conservation Dragonflies (Odonata) as bioindicators of the sustainability of agroforestry systems in the Atlantic Forest Correction: Spatial and temporal taxonomic and functional beta diversity of macroinvertebrate assemblages along a tropical dammed river Environmental heterogeneity drives the spatial distribution of macrobenthos in the Yellow River Delta wetland Trophic niche interactions among native and non-native fish species vary spatially in one of the world's largest reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1