Sreeja Sadasivan, S. Pradeep, Jishnu Chandran Ramachandran, Jayaprakash Narayan, Michał Jan Gęca
{"title":"Advances in droplet microfluidics: a comprehensive review of innovations, morphology, dynamics, and applications","authors":"Sreeja Sadasivan, S. Pradeep, Jishnu Chandran Ramachandran, Jayaprakash Narayan, Michał Jan Gęca","doi":"10.1007/s10404-025-02789-5","DOIUrl":null,"url":null,"abstract":"<div><p>Droplet microfluidics is a rapidly evolving area of research with significant implications in bioengineering, drug delivery, chemical synthesis, environmental monitoring, and micro-scale electronics manufacturing. Recent advancements in droplet generation methods, including the use of electric fields and acoustic waves, have been driven by related technological developments. These innovations have enabled the creation of droplets with a wide range of sizes, shapes, and compositions, opening new frontiers for droplet microfluidic applications. This study reviews recent advances in droplet formation within microfluidic channels, beginning with an overview of droplet microfluidics and followed by an analysis of the various techniques used for droplet formation. The paper examines the impact of channel geometry, fluid flow rates, and channel wall surface properties on droplet formation. Additionally, it discusses the control of microfluidic droplets and the diverse applications of droplet microfluidics. The study also analyzes the morphological changes of droplets in response to variations in different controlling factors and presents an overview of compound droplet microfluidics, highlighting its technological aspects and significance across various applications. The influential factors governing the dynamics of compound droplets and their respective effects are briefly reviewed throughout the study. In conclusion, the paper identifies the major challenges and opportunities associated with microfluidic droplet dynamics and outlines emerging areas based on this technology. Overall, it provides a comprehensive overview of recent developments in droplet formation within microfluidic channels.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02789-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Droplet microfluidics is a rapidly evolving area of research with significant implications in bioengineering, drug delivery, chemical synthesis, environmental monitoring, and micro-scale electronics manufacturing. Recent advancements in droplet generation methods, including the use of electric fields and acoustic waves, have been driven by related technological developments. These innovations have enabled the creation of droplets with a wide range of sizes, shapes, and compositions, opening new frontiers for droplet microfluidic applications. This study reviews recent advances in droplet formation within microfluidic channels, beginning with an overview of droplet microfluidics and followed by an analysis of the various techniques used for droplet formation. The paper examines the impact of channel geometry, fluid flow rates, and channel wall surface properties on droplet formation. Additionally, it discusses the control of microfluidic droplets and the diverse applications of droplet microfluidics. The study also analyzes the morphological changes of droplets in response to variations in different controlling factors and presents an overview of compound droplet microfluidics, highlighting its technological aspects and significance across various applications. The influential factors governing the dynamics of compound droplets and their respective effects are briefly reviewed throughout the study. In conclusion, the paper identifies the major challenges and opportunities associated with microfluidic droplet dynamics and outlines emerging areas based on this technology. Overall, it provides a comprehensive overview of recent developments in droplet formation within microfluidic channels.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).