{"title":"Petrogenesis and Metallogenic Implications of A-type Granites in the Mid–Late Jurassic Dayishan Complex, Southern Hunan Province, South China","authors":"Meng ZHANG, Yaohui JIANG, Yunchao LIU, Boning HAN","doi":"10.1111/1755-6724.15265","DOIUrl":null,"url":null,"abstract":"<p>The petrogenesis and genetic link to polymetallic mineralization of the granites in the Dayishan complex, southern Hunan province remain debated. Here, we present an integrated study on the petrology, zircon U-Pb ages and whole-rock geochemistry for this complex. Our findings indicate that the southern complex consists of (amphibole-bearing) biotite granites and muscovite granites emplaced at 153–151 Ma, and the central and northern complex consists of two-mica granites and tourmaline-bearing muscovite granites, respectively with the former emplaced at 164 Ma and the latter at 150 Ma. The (amphibole-bearing) biotite granites have SiO<sub>2</sub> contents of 68.0–73.8 wt% and are enriched in alkalis and rare earth elements and depleted in Sr and Ba. They display Zr + Y + Ce + Nb > 350 ppm and 10000 × Ga/Al > 2.6 along with high zircon saturation temperatures (821–883°C). The two-mica granites and (tourmaline-bearing) muscovite granites have high SiO<sub>2</sub> (74.4–77.3 wt%) and low Ga/Al, Zr + Nb + Ce + Y, K/Rb, Zr/Hf, and Nb/Ta along with low zircon saturation temperatures (709–817°C). Geochemical characteristics suggest that the (amphibole-bearing) biotite granites are A-type granites generated through shallow dehydration melting of early Paleozoic granitoids, and that the two-mica granites and (tourmaline-bearing) muscovite granites are fractionated A-type granites produced through fractionation crystallization from the (amphibole-bearing) biotite granites accompanied by fluid fractionation.</p>","PeriodicalId":7095,"journal":{"name":"Acta Geologica Sinica ‐ English Edition","volume":"99 1","pages":"100-113"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geologica Sinica ‐ English Edition","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-6724.15265","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The petrogenesis and genetic link to polymetallic mineralization of the granites in the Dayishan complex, southern Hunan province remain debated. Here, we present an integrated study on the petrology, zircon U-Pb ages and whole-rock geochemistry for this complex. Our findings indicate that the southern complex consists of (amphibole-bearing) biotite granites and muscovite granites emplaced at 153–151 Ma, and the central and northern complex consists of two-mica granites and tourmaline-bearing muscovite granites, respectively with the former emplaced at 164 Ma and the latter at 150 Ma. The (amphibole-bearing) biotite granites have SiO2 contents of 68.0–73.8 wt% and are enriched in alkalis and rare earth elements and depleted in Sr and Ba. They display Zr + Y + Ce + Nb > 350 ppm and 10000 × Ga/Al > 2.6 along with high zircon saturation temperatures (821–883°C). The two-mica granites and (tourmaline-bearing) muscovite granites have high SiO2 (74.4–77.3 wt%) and low Ga/Al, Zr + Nb + Ce + Y, K/Rb, Zr/Hf, and Nb/Ta along with low zircon saturation temperatures (709–817°C). Geochemical characteristics suggest that the (amphibole-bearing) biotite granites are A-type granites generated through shallow dehydration melting of early Paleozoic granitoids, and that the two-mica granites and (tourmaline-bearing) muscovite granites are fractionated A-type granites produced through fractionation crystallization from the (amphibole-bearing) biotite granites accompanied by fluid fractionation.
期刊介绍:
Acta Geologica Sinica mainly reports the latest and most important achievements in the theoretical and basic research in geological sciences, together with new technologies, in China. Papers published involve various aspects of research concerning geosciences and related disciplines, such as stratigraphy, palaeontology, origin and history of the Earth, structural geology, tectonics, mineralogy, petrology, geochemistry, geophysics, geology of mineral deposits, hydrogeology, engineering geology, environmental geology, regional geology and new theories and technologies of geological exploration.