{"title":"Metabolomic Study of the Analgesic Effect of Dalbergia hancei Benth (D. hancei) on Nociceptive Pain","authors":"Chunping Qin, Qin Qiu, Yuanyuan Liu, Pengfei Li, Huiqing Mo, Zujie Qin, Hongxing Wei, Fangfang Qin, Hanshen Zhen, Jiangcun Wei","doi":"10.1002/bmc.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Dalbergia hancei</i> <i>Benth</i> (<i>D. hancei</i>) is a plant belonging to the Fabaceae family. It has analgesic and anti-inflammatory effects and is used by the Zhuang people to relieve pain. However, the mechanism underlying its analgesic effects remains unclear. This study investigates the analgesic effect of <i>D. hancei</i> based on metabolomics to explain the mechanism of its analgesia from a metabolomics perspective. The analgesic effect was evaluated through the acetic acid-induced writhing test and hot plate test. Three treatment groups received different dosages of <i>D. hancei</i> (0.91 g/kg, 3.64 g/kg, 7.28 g/kg). Its analgesic mechanism was investigated using analgesic behavioral tests and metabolomics. The results of analgesic behavioral experiments showed that all dose groups of <i>D. hancei</i> could relieve pain. A total of eight differential metabolites were identified in the metabolomics results. These biomarkers are associated with five metabolic pathways. Following treatment with <i>D. hancei</i>, eight differential metabolites were identified as regulated, primarily affecting amino acid metabolism, pantothenate and CoA biosynthesis, and steroid hormone biosynthesis. This study revealed the mechanism of analgesia from a metabolomic perspective to provide a basis for screening TCM drugs in pain treatment.</p>\n </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.70020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dalbergia hanceiBenth (D. hancei) is a plant belonging to the Fabaceae family. It has analgesic and anti-inflammatory effects and is used by the Zhuang people to relieve pain. However, the mechanism underlying its analgesic effects remains unclear. This study investigates the analgesic effect of D. hancei based on metabolomics to explain the mechanism of its analgesia from a metabolomics perspective. The analgesic effect was evaluated through the acetic acid-induced writhing test and hot plate test. Three treatment groups received different dosages of D. hancei (0.91 g/kg, 3.64 g/kg, 7.28 g/kg). Its analgesic mechanism was investigated using analgesic behavioral tests and metabolomics. The results of analgesic behavioral experiments showed that all dose groups of D. hancei could relieve pain. A total of eight differential metabolites were identified in the metabolomics results. These biomarkers are associated with five metabolic pathways. Following treatment with D. hancei, eight differential metabolites were identified as regulated, primarily affecting amino acid metabolism, pantothenate and CoA biosynthesis, and steroid hormone biosynthesis. This study revealed the mechanism of analgesia from a metabolomic perspective to provide a basis for screening TCM drugs in pain treatment.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.