{"title":"Diboron Reagents in N-N Bond Cleavage of Hydrazines, N-Nitrosamines, and Azides: Reactivity and Mechanistic Insights.","authors":"Belén Cid, Mariola Tortosa, Raúl Valderrama, Inés Alonso, Emily Vargas","doi":"10.1002/chem.202404081","DOIUrl":null,"url":null,"abstract":"<p><p>Diboron reagents are known for their ability to promote the deoxygenation of amine or pyridine oxides, nitroarenes, and nitrones through the formation of B-O-B bonds. In this study, we have investigated the potential of diboron reagents to induce N-N bond cleavage in hydrazines, N-nitrosamines and azides. Our findings show that the combination of B2nep2 as diboron source and KOMe as a Lewis base can effectively promote the N-N cleavage of a wide variety of substrates. For hydrazines and nitrosamines, the presence of an aryl group is essential for the reaction to proceed, probably due to a better stabilization of the negative charge developed during N-N bond cleavage. Both types of azides, aromatic and aliphatic, are easily reduced, and the resulting amines can be in situ converted into the corresponding amides by simple treatment with a carboxylic acid. Experimental and theoretical calculations suggest a non-radical mechanism, with concerted B-B and N-N bond cleavage in the case of hydrazines and azides, and a stepwise mechanism in the case of N-nitrosamines, where deoxygenation occurs as the first step, involving the formation of an N-nitrene intermediate.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202404081"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202404081","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diboron reagents are known for their ability to promote the deoxygenation of amine or pyridine oxides, nitroarenes, and nitrones through the formation of B-O-B bonds. In this study, we have investigated the potential of diboron reagents to induce N-N bond cleavage in hydrazines, N-nitrosamines and azides. Our findings show that the combination of B2nep2 as diboron source and KOMe as a Lewis base can effectively promote the N-N cleavage of a wide variety of substrates. For hydrazines and nitrosamines, the presence of an aryl group is essential for the reaction to proceed, probably due to a better stabilization of the negative charge developed during N-N bond cleavage. Both types of azides, aromatic and aliphatic, are easily reduced, and the resulting amines can be in situ converted into the corresponding amides by simple treatment with a carboxylic acid. Experimental and theoretical calculations suggest a non-radical mechanism, with concerted B-B and N-N bond cleavage in the case of hydrazines and azides, and a stepwise mechanism in the case of N-nitrosamines, where deoxygenation occurs as the first step, involving the formation of an N-nitrene intermediate.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.