A Machine-Learned "Chemical Intuition" to Overcome Spectroscopic Data Scarcity.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-02-17 DOI:10.1021/acs.jcim.4c02329
Cailum M K Stienstra, Teun van Wieringen, Liam Hebert, Patrick Thomas, Kas J Houthuijs, Giel Berden, Jos Oomens, Jonathan Martens, W Scott Hopkins
{"title":"A Machine-Learned \"Chemical Intuition\" to Overcome Spectroscopic Data Scarcity.","authors":"Cailum M K Stienstra, Teun van Wieringen, Liam Hebert, Patrick Thomas, Kas J Houthuijs, Giel Berden, Jos Oomens, Jonathan Martens, W Scott Hopkins","doi":"10.1021/acs.jcim.4c02329","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning models for predicting IR spectra of molecular ions (infrared ion spectroscopy, IRIS) have yet to be reported owing to the relatively sparse experimental data sets available. To overcome this limitation, we employ the Graphormer-IR model for neutral molecules as a knowledgeable starting point and then employ transfer learning to refine the model to predict the spectra of gaseous ions. A library of 10,336 computed spectra and a small data set of 312 experimental IRIS spectra is used for model fine-tuning. Nonspecific global graph encodings that describe the molecular charge state (<i>i.e</i>., (de)protonation, sodiation), combined with an additional transfer learning step that considers computed spectra for ions, improved model performance. The resulting Graphormer-IRIS model yields spectra that are 21% more accurate than those produced by commonly employed DFT quantum chemical models, while capturing subtle phenomena such as spectral red-shifts due to sodiation. Dimensionality reduction of model embeddings demonstrates derived \"chemical intuition\" of functional groups, trends in molecular electron density, and the location of charge sites. Our approach will enable fast IRIS predictions for determining the structures of unknown small molecule analytes (<i>e.g</i>., metabolites, lipids) present in biological samples.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02329","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning models for predicting IR spectra of molecular ions (infrared ion spectroscopy, IRIS) have yet to be reported owing to the relatively sparse experimental data sets available. To overcome this limitation, we employ the Graphormer-IR model for neutral molecules as a knowledgeable starting point and then employ transfer learning to refine the model to predict the spectra of gaseous ions. A library of 10,336 computed spectra and a small data set of 312 experimental IRIS spectra is used for model fine-tuning. Nonspecific global graph encodings that describe the molecular charge state (i.e., (de)protonation, sodiation), combined with an additional transfer learning step that considers computed spectra for ions, improved model performance. The resulting Graphormer-IRIS model yields spectra that are 21% more accurate than those produced by commonly employed DFT quantum chemical models, while capturing subtle phenomena such as spectral red-shifts due to sodiation. Dimensionality reduction of model embeddings demonstrates derived "chemical intuition" of functional groups, trends in molecular electron density, and the location of charge sites. Our approach will enable fast IRIS predictions for determining the structures of unknown small molecule analytes (e.g., metabolites, lipids) present in biological samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
ACP-CLB: An Anticancer Peptide Prediction Model Based on Multichannel Discriminative Processing and Integration of Large Pretrained Protein Language Models. RAG_MCNNIL6: A Retrieval-Augmented Multi-Window Convolutional Network for Accurate Prediction of IL-6 Inducing Epitopes. Fine-Tuning a Genetic Algorithm for CAMD: A Screening-Guided Warm Start. T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein-Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment. PbImpute: Precise Zero Discrimination and Balanced Imputation in Single-Cell RNA Sequencing Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1