{"title":"Impact of ionizable groups in star polymer nanoparticles on NLRP3 inflammasome activation.","authors":"Mehak Malhotra, Sarmishta Thodur, Ashish Kulkarni","doi":"10.1039/d4bm01349b","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of cancer nanovaccines (N.V.s) has transformed immunotherapy by using nanoparticles as biologic delivery vehicles or vaccine adjuvants. However, challenges remain due to nanoparticle-immune cell interactions. Investigating nanoparticle (N.P.) physicochemical effects on the innate immune system is crucial for safe biomaterials design. The NLRP3 inflammasome, a key innate immunity component, is implicated in many inflammatory disorders. Various nanoparticle-associated molecular patterns (NAMPs) trigger NLRP3 activation, but the combined effect of these NAMPs in a single N.P. platform is not well understood. Star polymer nanocarriers were chosen to study the impact of combined hydrophobic and ionizable groups on NLRP3 activation. Star polymers offer stable self-assembly, high drug/gene encapsulation, and enhanced cellular internalization. We designed 4-arm star random copolymers with constant hydrophobic moiety and varied ionizable groups to evaluate their NLRP3 activation in macrophages. The study revealed differences in cytokine release and cell death linked to ionizable groups, providing insights for selecting safe, immunomodulatory biomaterials.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01349b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of cancer nanovaccines (N.V.s) has transformed immunotherapy by using nanoparticles as biologic delivery vehicles or vaccine adjuvants. However, challenges remain due to nanoparticle-immune cell interactions. Investigating nanoparticle (N.P.) physicochemical effects on the innate immune system is crucial for safe biomaterials design. The NLRP3 inflammasome, a key innate immunity component, is implicated in many inflammatory disorders. Various nanoparticle-associated molecular patterns (NAMPs) trigger NLRP3 activation, but the combined effect of these NAMPs in a single N.P. platform is not well understood. Star polymer nanocarriers were chosen to study the impact of combined hydrophobic and ionizable groups on NLRP3 activation. Star polymers offer stable self-assembly, high drug/gene encapsulation, and enhanced cellular internalization. We designed 4-arm star random copolymers with constant hydrophobic moiety and varied ionizable groups to evaluate their NLRP3 activation in macrophages. The study revealed differences in cytokine release and cell death linked to ionizable groups, providing insights for selecting safe, immunomodulatory biomaterials.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.