Identification of VcRBOH genes in blueberry and functional characterization of VcRBOHF in plant defense.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-02-17 DOI:10.1186/s12864-025-11303-8
Zhiqiang Song, Chao Chen, Hua Duan, Ting Yu, Yaqian Zhang, Yuneng Wei, Decong Xu, Dong Liu
{"title":"Identification of VcRBOH genes in blueberry and functional characterization of VcRBOHF in plant defense.","authors":"Zhiqiang Song, Chao Chen, Hua Duan, Ting Yu, Yaqian Zhang, Yuneng Wei, Decong Xu, Dong Liu","doi":"10.1186/s12864-025-11303-8","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS) serve as signal molecules in plant defense responses, and the respiratory burst oxidase homolog (RBOH) enzyme plays a crucial role in their production. Although numerous RBOH family members have been identified in various plants, little is known about the RBOH genes in blueberries. In this study, we identified six VcRBOH genes from the blueberry genome. Phylogenetic analysis revealed that these VcRBOH genes can be classified into three subgroups. Conserved domain and motif analysis demonstrated high sequence similarity among VcRBOH proteins. Analysis of cis-acting elements suggested that VcRBOH genes may be involved in stress, light, and phytohormone responsiveness. Based on transcriptome data, we observed low expression levels of VcRBOHB, VcRBOHC, and VcRBOHE during the flower_at_anthesis stage. In contrast, VcRBOHA and VcRBOHD showed relatively high expression levels in various tissues. The reverse-transcription quantitative PCR (RT-qPCR) analysis indicated rapid induction of VcRBOHF by flg22 and chitin treatments. Notably, overexpression of VcRBOHF in Arabidopsis promoted PTI responses, including increased expression of marker genes, ROS production, and callose deposition. Moreover, the overexpression of VcRBOHF resulted in enhanced disease resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 infection. These findings provide valuable insights into the roles of VcRBOHF genes in plant defense responses and lay the groundwork for a more comprehensive understanding of the molecular mechanisms underpinning blueberry disease resistance.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"153"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11303-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species (ROS) serve as signal molecules in plant defense responses, and the respiratory burst oxidase homolog (RBOH) enzyme plays a crucial role in their production. Although numerous RBOH family members have been identified in various plants, little is known about the RBOH genes in blueberries. In this study, we identified six VcRBOH genes from the blueberry genome. Phylogenetic analysis revealed that these VcRBOH genes can be classified into three subgroups. Conserved domain and motif analysis demonstrated high sequence similarity among VcRBOH proteins. Analysis of cis-acting elements suggested that VcRBOH genes may be involved in stress, light, and phytohormone responsiveness. Based on transcriptome data, we observed low expression levels of VcRBOHB, VcRBOHC, and VcRBOHE during the flower_at_anthesis stage. In contrast, VcRBOHA and VcRBOHD showed relatively high expression levels in various tissues. The reverse-transcription quantitative PCR (RT-qPCR) analysis indicated rapid induction of VcRBOHF by flg22 and chitin treatments. Notably, overexpression of VcRBOHF in Arabidopsis promoted PTI responses, including increased expression of marker genes, ROS production, and callose deposition. Moreover, the overexpression of VcRBOHF resulted in enhanced disease resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 infection. These findings provide valuable insights into the roles of VcRBOHF genes in plant defense responses and lay the groundwork for a more comprehensive understanding of the molecular mechanisms underpinning blueberry disease resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Gene novelty and gene family expansion in the early evolution of Lepidoptera. Comprehensive analysis of long non-coding RNA and mRNA expression patterns during seminiferous tubules maturation in Guanzhong dairy goats. Insights from draft genomes of Heterodera species isolated from field soil samples. Plastic sex-trait modulation by differential gene expression according to social environment in male red deer. Advancing genetic improvement in the omics era: status and priorities for United States aquaculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1