Huanhou Su, Xuewen Zhou, Guanchuan Lin, Chaochao Luo, Wei Meng, Cui Lv, Yuting Chen, Zebin Wen, Xu Li, Yongzhang Wu, Changtai Xiao, Jian Yang, Jiameng Lu, Xingguang Luo, Yan Chen, Paul Kh Tam, Chuanjiang Li, Haitao Sun, Xinghua Pan
{"title":"Deciphering the Oncogenic Landscape of Hepatocytes Through Integrated Single-Nucleus and Bulk RNA-Seq of Hepatocellular Carcinoma.","authors":"Huanhou Su, Xuewen Zhou, Guanchuan Lin, Chaochao Luo, Wei Meng, Cui Lv, Yuting Chen, Zebin Wen, Xu Li, Yongzhang Wu, Changtai Xiao, Jian Yang, Jiameng Lu, Xingguang Luo, Yan Chen, Paul Kh Tam, Chuanjiang Li, Haitao Sun, Xinghua Pan","doi":"10.1002/advs.202412944","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality, while the hepatocyte mechanisms driving oncogenesis remains poorly understood. In this study, single-nucleus RNA sequencing of samples from 22 HCC patients revealed 10 distinct hepatocyte subtypes, including beneficial Hep0, predominantly malignant Hep2, and immunosuppressive Hep9. These subtypes were strongly associated with patient prognosis, confirmed in TCGA-LIHC and Fudan HCC cohorts through hepatocyte composition deconvolution. A quantile-based scoring method is developed to integrate data from 29 public HCC datasets, creating a Quantile Distribution Model (QDM) with excellent diagnostic accuracy (Area Under the Curve, AUC = 0.968-0.982). QDM was employed to screen potential biomarkers, revealing that PDE7B functions as a key gene whose suppression promotes HCC progression. Guided by the genes specific to Hep0/2/9 subtypes, HCC is categorized into metabolic, inflammatory, and matrix classes, which are distinguishable in gene mutation frequencies, survival times, enriched pathways, and immune infiltration. Meanwhile, the sensitive drugs of the three HCC classes are identified, namely ouabain, teniposide, and TG-101348. This study presents the largest single-cell hepatocyte dataset to date, offering transformative insights into hepatocarcinogenesis and a comprehensive framework for advancing HCC diagnostics, prognostics, and personalized treatment strategies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412944"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality, while the hepatocyte mechanisms driving oncogenesis remains poorly understood. In this study, single-nucleus RNA sequencing of samples from 22 HCC patients revealed 10 distinct hepatocyte subtypes, including beneficial Hep0, predominantly malignant Hep2, and immunosuppressive Hep9. These subtypes were strongly associated with patient prognosis, confirmed in TCGA-LIHC and Fudan HCC cohorts through hepatocyte composition deconvolution. A quantile-based scoring method is developed to integrate data from 29 public HCC datasets, creating a Quantile Distribution Model (QDM) with excellent diagnostic accuracy (Area Under the Curve, AUC = 0.968-0.982). QDM was employed to screen potential biomarkers, revealing that PDE7B functions as a key gene whose suppression promotes HCC progression. Guided by the genes specific to Hep0/2/9 subtypes, HCC is categorized into metabolic, inflammatory, and matrix classes, which are distinguishable in gene mutation frequencies, survival times, enriched pathways, and immune infiltration. Meanwhile, the sensitive drugs of the three HCC classes are identified, namely ouabain, teniposide, and TG-101348. This study presents the largest single-cell hepatocyte dataset to date, offering transformative insights into hepatocarcinogenesis and a comprehensive framework for advancing HCC diagnostics, prognostics, and personalized treatment strategies.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.