SSB-2548 Inhibits CXCR-4 Activation, Inducing Apoptosis in Acute Myeloid Leukemia Cells.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2025-02-18 DOI:10.1002/bab.2726
Ayed A Dera
{"title":"SSB-2548 Inhibits CXCR-4 Activation, Inducing Apoptosis in Acute Myeloid Leukemia Cells.","authors":"Ayed A Dera","doi":"10.1002/bab.2726","DOIUrl":null,"url":null,"abstract":"<p><p>The role of C-X-C chemokine receptor type 4 (CXR-4) in chemotherapy resistance remains crucial in promoting proliferation, invasion, and progression in acute myeloid leukemia (AML) cells. This study aims to screen and investigate a potential lead candidate as a therapeutic agent targeting CXCR-4 in AML cells. Diversity-based virtual screening process using AutoDock-Vina was employed to screen approximately 850,000 compounds from the ChemBridge-small molecule database. The binding stability and dynamics were investigated through GROMACS-based molecular dynamics simulations and root mean square deviation (RMSD). AML cells (THP-1, HL-60, and SKM-1 cell lines) were used to assess proliferation CXCR-4 expression, and apoptosis induction was measured using flow cytometry and trans-endothelial migration was assessed using calorimetric method in AML cells. The absorption, distribution, metabolism, and excretion (ADME) properties were predicted using SwissADME server. The computational evaluations revealed SSB-2548 as a lead candidate that binds stably to CXCR-4. Molecular dynamics simulations provided detailed insights into the conformational changes of the SSB-2548/CXCR-4 complex. The compound inhibited the THP-1, HL-60, and SKM-1 cell proliferations with GI<sub>50</sub> values of 84.57, 41.30, and 120.50 nM, respectively. SSB-2548 decreased the trans-endothelial migration and CXCR-4 expression in while inducing early and late phase apoptosis in all three AML cell types. ADME predictions indicated a favorable lead-likeness, gastrointestinal absorption, and lack of notable toxicity. Computational assessments identified SSB-2548 as a novel CXCR-4 inhibitor. In vitro evaluations proved this lead compound effective against AML cells. These findings lay the groundwork for future, investigations positioning SSB-2548 as a candidate for the development of targeted therapies against AML.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2726","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of C-X-C chemokine receptor type 4 (CXR-4) in chemotherapy resistance remains crucial in promoting proliferation, invasion, and progression in acute myeloid leukemia (AML) cells. This study aims to screen and investigate a potential lead candidate as a therapeutic agent targeting CXCR-4 in AML cells. Diversity-based virtual screening process using AutoDock-Vina was employed to screen approximately 850,000 compounds from the ChemBridge-small molecule database. The binding stability and dynamics were investigated through GROMACS-based molecular dynamics simulations and root mean square deviation (RMSD). AML cells (THP-1, HL-60, and SKM-1 cell lines) were used to assess proliferation CXCR-4 expression, and apoptosis induction was measured using flow cytometry and trans-endothelial migration was assessed using calorimetric method in AML cells. The absorption, distribution, metabolism, and excretion (ADME) properties were predicted using SwissADME server. The computational evaluations revealed SSB-2548 as a lead candidate that binds stably to CXCR-4. Molecular dynamics simulations provided detailed insights into the conformational changes of the SSB-2548/CXCR-4 complex. The compound inhibited the THP-1, HL-60, and SKM-1 cell proliferations with GI50 values of 84.57, 41.30, and 120.50 nM, respectively. SSB-2548 decreased the trans-endothelial migration and CXCR-4 expression in while inducing early and late phase apoptosis in all three AML cell types. ADME predictions indicated a favorable lead-likeness, gastrointestinal absorption, and lack of notable toxicity. Computational assessments identified SSB-2548 as a novel CXCR-4 inhibitor. In vitro evaluations proved this lead compound effective against AML cells. These findings lay the groundwork for future, investigations positioning SSB-2548 as a candidate for the development of targeted therapies against AML.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
A new species of the genus Trichopagurus de Saint Laurent, 1968 (Crustacea: Decapoda: Anomura: Paguridae) from a semi-submerged marine cave in Okinawa Island, southwestern Japan.
IF 0.9 4区 生物学ZootaxaPub Date : 2024-03-05 DOI: 10.11646/zootaxa.5419.1.5
Hiroki Nakajima, Yoshihisa Fujita, Masayuki Osawa
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
DNA Ligase From Thermococcus radiotolerans: Recombinant Production, Characterization, Up-Scale Fermentation, and In Silico Evaluation. A Low-Fouling Electrochemical Immunosensor Based On Metal-Organic Framework and Ternary Metal Oxide Nanomaterials Using Dual Signal Amplification Strategy for Sensitive Detection of Prostate-Specific Antigen (PSA) in Patient Samples. Apelin-13 Inhibits the Adhesion of Monocytes to Endothelial Cells via the Gfi1/NF-κB Signaling Pathway. Selection of DNA Aptamers Against Parathyroid Hormone for Electrochemical Impedimetric Biosensor System Development. Impact of Invasive Weeds Lantana camara L. and Parthenium hysterophorus L. on the Secondary Metabolite Profiles of Okra (Abelmoschus esculentus L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1