ACSS3 promotes the tumorigenesis of non-small cell lung cancer via suppressing p53-mediated ferroptosis.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Experimental cell research Pub Date : 2025-02-15 DOI:10.1016/j.yexcr.2025.114438
Jing Zhang, Xiuhong Wang, Jingyi Wang, Xiao Wen, Siyuan Chen, Tao Wang, Bei Wang, Wenquan Hu
{"title":"ACSS3 promotes the tumorigenesis of non-small cell lung cancer via suppressing p53-mediated ferroptosis.","authors":"Jing Zhang, Xiuhong Wang, Jingyi Wang, Xiao Wen, Siyuan Chen, Tao Wang, Bei Wang, Wenquan Hu","doi":"10.1016/j.yexcr.2025.114438","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is a subtype of the most frequently diagnosed cancer, causing a considerable number of deaths globally. Mitochondrial dysfunction was found to promote malignant progression. However, the underlying mechanism remains unclear. Acyl-CoA synthetase short chain family member 3 (ACSS3) is mainly located in mitochondria, which abnormal regulation is usually accompanied by the occurrence and development of tumors. In this study, we found that the expression level of ACSS3 was correlated with poor prognosis in patients with NSCLC. Moreover, we demonstrated that ACSS3 knockdown led to mitochondrial contraction, increased reactive oxygen species levels, decreased mitochondrial membrane potential, and subsequently inhibited tumor growth of NSCLC cells in vitro and in vivo, whereas its overexpression promoted these processes. Mechanistically, ACSS3 knockdown promoted ferroptosis through transcriptional control of SLC7A11 and GPX4. Further investigations indicated that ACSS3 loss inhibited the SLC7A11/GPX4 axis by enhancing p53 stability. Taken together, our data confirmed that ACSS3 promotes NSCLC tumorigenesis through inhibiting the p53-mediated ferroptosis. Hence, ACSS3 emerges as a promising therapeutic target for NSCLC treatment.</p>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":" ","pages":"114438"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yexcr.2025.114438","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small cell lung cancer (NSCLC) is a subtype of the most frequently diagnosed cancer, causing a considerable number of deaths globally. Mitochondrial dysfunction was found to promote malignant progression. However, the underlying mechanism remains unclear. Acyl-CoA synthetase short chain family member 3 (ACSS3) is mainly located in mitochondria, which abnormal regulation is usually accompanied by the occurrence and development of tumors. In this study, we found that the expression level of ACSS3 was correlated with poor prognosis in patients with NSCLC. Moreover, we demonstrated that ACSS3 knockdown led to mitochondrial contraction, increased reactive oxygen species levels, decreased mitochondrial membrane potential, and subsequently inhibited tumor growth of NSCLC cells in vitro and in vivo, whereas its overexpression promoted these processes. Mechanistically, ACSS3 knockdown promoted ferroptosis through transcriptional control of SLC7A11 and GPX4. Further investigations indicated that ACSS3 loss inhibited the SLC7A11/GPX4 axis by enhancing p53 stability. Taken together, our data confirmed that ACSS3 promotes NSCLC tumorigenesis through inhibiting the p53-mediated ferroptosis. Hence, ACSS3 emerges as a promising therapeutic target for NSCLC treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
期刊最新文献
Development of a biomarker panel for cell characterization intended for cultivated meat EBP50 regulates senescence and focal adhesion in endometrial carcinoma USP48 inhibits colorectal cancer progression and promotes M1-like macrophage polarization by stabilizing TAK1 HSPD1-facilitated formation of CTPS cytoophidia promotes proliferation in C2C12 cells Phthalocyanine and photodynamic therapy relieve albumin paclitaxel and gemcitabine chemoresistance in pancreatic cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1