Factors Influencing Contact Force in Robotic Magnetic Navigation Ablation.

IF 2.3 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Electrophysiology Pub Date : 2025-02-17 DOI:10.1111/jce.16597
Michal Orczykowski, Maciej Bak, Krzysztof Kaczmarek, Piotr Urbanek, Bodalski Robert, Krzysztof Dubowski, Grzegorz Warminski, Pawel Derejko, Pawel Ptaszynski, Maciej Sterlinski, Maria Bilinska, Lukasz Szumowski
{"title":"Factors Influencing Contact Force in Robotic Magnetic Navigation Ablation.","authors":"Michal Orczykowski, Maciej Bak, Krzysztof Kaczmarek, Piotr Urbanek, Bodalski Robert, Krzysztof Dubowski, Grzegorz Warminski, Pawel Derejko, Pawel Ptaszynski, Maciej Sterlinski, Maria Bilinska, Lukasz Szumowski","doi":"10.1111/jce.16597","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Stability of catheter-tissue contact in the robotic magnetic navigation (RMN) system is one of the key features that distinguishes this system from manually guided catheters. Numerous studies have shown that contact force (CF) in manually controlled catheters is as crucial for forming an optimal lesion as the duration of application or power. Catheters used in the RMN system lack a quantitative method for intraoperative monitoring of this parameter. Our study aims to partially address this gap in scientific knowledge.</p><p><strong>Methods: </strong>We conducted a total of 1200 CF measurements using the RMN system (Stereotaxis, St. Louis, MO, USA), a magnetic-guided 8 Fr RF ablation catheter (THERMOCOOL RMT Catheter, Biosense Webster, Irvine, CA, USA) inserted through a long sheath (SR0, Abbott Cardiovascular, Nathan Lane North, Plymouth, MN, USA), and a precision jewelry scale (IKEME, Guangdong, CN). We analyzed the impact on the obtained CF values of four different magnetic field vectors (transverse, sagittal, caudal, and cranial), two field strengths (0.1T and 0.08T), and three catheter extension configurations from the long sheath (with Position 1 being the least extended and Position 3 the most extended).</p><p><strong>Results: </strong>The contact force values varied significantly across the different magnetic field vectors, field strengths, and catheter extensions from the vascular sheath. The greatest differences in achieved values were observed across the different magnetic field vectors in the Position 1, ranging from 3.52 ± 0.1 g (caudal plane) to 15.15 ± 0.05 g (cranial plane) at 0.08 Tesla (T) field strength (p < 0.001), and from 4.10 ± 0.06 g (caudal) to 15.01 ± 0.07 g (cranial) at 0.1 T, p < 0.001. Differences in other vectors reached approximately 20%. The highest CF values were obtained in Position 1, intermediate values in Position 2, and the lowest in Position 3. An exception was the transverse vector, where, particularly with a magnetic field of 0.1 T, more similar values were observed across Positions 1-3, with respective values of 8.61 ± 0.14 g, 9.36 ± 0.06 g, and 8.31 ± 0.05 g. A stronger magnetic field (0.1 T compared to 0.08 T) resulted in higher CF values, especially during measurements in the transverse vector. This effect was most pronounced in the most extended catheter from the sheath - Position 3 (with respective values of 4.54 ± 0.09 g vs. 8.31 ± 0.05 g, p < 0.001). In the sagittal, cranial, and caudal vectors, the differences were less noticeable.</p><p><strong>Conclusion: </strong>Different magnetic field vectors, catheter extensions from the sheath, and magnetic field strengths result in varying contact force values. For effective radiofrequency ablation lesions, these factors should be considered alongside power, duration, and other established parameters.</p>","PeriodicalId":15178,"journal":{"name":"Journal of Cardiovascular Electrophysiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jce.16597","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Stability of catheter-tissue contact in the robotic magnetic navigation (RMN) system is one of the key features that distinguishes this system from manually guided catheters. Numerous studies have shown that contact force (CF) in manually controlled catheters is as crucial for forming an optimal lesion as the duration of application or power. Catheters used in the RMN system lack a quantitative method for intraoperative monitoring of this parameter. Our study aims to partially address this gap in scientific knowledge.

Methods: We conducted a total of 1200 CF measurements using the RMN system (Stereotaxis, St. Louis, MO, USA), a magnetic-guided 8 Fr RF ablation catheter (THERMOCOOL RMT Catheter, Biosense Webster, Irvine, CA, USA) inserted through a long sheath (SR0, Abbott Cardiovascular, Nathan Lane North, Plymouth, MN, USA), and a precision jewelry scale (IKEME, Guangdong, CN). We analyzed the impact on the obtained CF values of four different magnetic field vectors (transverse, sagittal, caudal, and cranial), two field strengths (0.1T and 0.08T), and three catheter extension configurations from the long sheath (with Position 1 being the least extended and Position 3 the most extended).

Results: The contact force values varied significantly across the different magnetic field vectors, field strengths, and catheter extensions from the vascular sheath. The greatest differences in achieved values were observed across the different magnetic field vectors in the Position 1, ranging from 3.52 ± 0.1 g (caudal plane) to 15.15 ± 0.05 g (cranial plane) at 0.08 Tesla (T) field strength (p < 0.001), and from 4.10 ± 0.06 g (caudal) to 15.01 ± 0.07 g (cranial) at 0.1 T, p < 0.001. Differences in other vectors reached approximately 20%. The highest CF values were obtained in Position 1, intermediate values in Position 2, and the lowest in Position 3. An exception was the transverse vector, where, particularly with a magnetic field of 0.1 T, more similar values were observed across Positions 1-3, with respective values of 8.61 ± 0.14 g, 9.36 ± 0.06 g, and 8.31 ± 0.05 g. A stronger magnetic field (0.1 T compared to 0.08 T) resulted in higher CF values, especially during measurements in the transverse vector. This effect was most pronounced in the most extended catheter from the sheath - Position 3 (with respective values of 4.54 ± 0.09 g vs. 8.31 ± 0.05 g, p < 0.001). In the sagittal, cranial, and caudal vectors, the differences were less noticeable.

Conclusion: Different magnetic field vectors, catheter extensions from the sheath, and magnetic field strengths result in varying contact force values. For effective radiofrequency ablation lesions, these factors should be considered alongside power, duration, and other established parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
14.80%
发文量
433
审稿时长
3-6 weeks
期刊介绍: Journal of Cardiovascular Electrophysiology (JCE) keeps its readership well informed of the latest developments in the study and management of arrhythmic disorders. Edited by Bradley P. Knight, M.D., and a distinguished international editorial board, JCE is the leading journal devoted to the study of the electrophysiology of the heart.
期刊最新文献
Response to the Letter to the Editor "How to Manage Ventricular Arrhythmia Following Durable Left Ventricular Assist Device Implantation". Catheter Ablation Improves Ventilatory Efficiency in Atrial Fibrillation-Mediated Cardiomyopathy. Impact of Tricuspid Regurgitation on Atrial Fibrillation Recurrence After Pulmonary Vein Isolation. Presence of Ineffective Cardiac Resynchronization Therapy Pacing Provides Insights Into Hidden Causes and Therapeutic Targets of Nonresponder. Response to Letter to the Editor Concerning the Article "Ablation of Premature Ventricular Contractions with Prepotentials Mapped Inside Coronary Cusps: When to Go Infra-Valvular?"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1