Vitamin D reduces VSMC foam cell formation and protect against AS progression.

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Endocrinology Pub Date : 2025-02-01 DOI:10.1530/JOE-24-0056
Xiaoling Zhang, Juxiang Liu, Jinxing Quan, Lei Han, Gaixiang Luo, Panpan Jiang, Jie Jing
{"title":"Vitamin D reduces VSMC foam cell formation and protect against AS progression.","authors":"Xiaoling Zhang, Juxiang Liu, Jinxing Quan, Lei Han, Gaixiang Luo, Panpan Jiang, Jie Jing","doi":"10.1530/JOE-24-0056","DOIUrl":null,"url":null,"abstract":"<p><p>The role that vascular smooth muscle cell (VSMC)-derived foam cells play as drivers of atherosclerosis has been a growing focus of recent research interest. Toll-like receptor 4 (TLR4) has been identified as a regulator of the formation of VSMC foam cells, while vitamin D can reportedly suppress macrophage-derived foam cell development. Our aim is to investigate Whether vitamin D can similarly suppress the formation of VSMC foam cells, as does the role that TLR4 plays in this pathogenic context.The impact of vitamin D on VSMC-derived foam cell and atherosclerotic plaque formation was assessed, and the expression of cholesterol transport-related genes and TLR4 was assessed in ApoE-/- mice. The impact of 1,25(OH)2D3 on the ox-LDL-mediated formation of foam cells and the underlying molecular mechanisms were also examined in VSMCs cultured in vitro. Supplemental vitamin D administration resulted in a pronounced reduction in aortic atherosclerotic plaque formation and the development of SMA-a-positive foam cells. Vitamin D further suppressed TLR4, CD36, and SR-A in atherosclerotic plaque lesions while promoting ABCA1, ABCG1, and LXR-α upregulation. 1, 25 (OH)2 D3 significantly reduced Dil-ox-LDL uptake and increased NBD-LDL efflux in VSMCs, in addition to suppressing TLR4, CD36, and SR-A expression, while upregulating ABCA1, ABCG1, and LXR-α. Knocking down TLR4 impaired VSMC foam cell formation, while 1,25(OH)2D3-induced JNK activation suppressed TLR4 signaling and promoted VSMC foam cell development. Our study reveals that Vitamin D can reduce VSMC foam cell formation and protect against atherosclerotic progression through the JNK-TLR4 signaling pathway.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-24-0056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The role that vascular smooth muscle cell (VSMC)-derived foam cells play as drivers of atherosclerosis has been a growing focus of recent research interest. Toll-like receptor 4 (TLR4) has been identified as a regulator of the formation of VSMC foam cells, while vitamin D can reportedly suppress macrophage-derived foam cell development. Our aim is to investigate Whether vitamin D can similarly suppress the formation of VSMC foam cells, as does the role that TLR4 plays in this pathogenic context.The impact of vitamin D on VSMC-derived foam cell and atherosclerotic plaque formation was assessed, and the expression of cholesterol transport-related genes and TLR4 was assessed in ApoE-/- mice. The impact of 1,25(OH)2D3 on the ox-LDL-mediated formation of foam cells and the underlying molecular mechanisms were also examined in VSMCs cultured in vitro. Supplemental vitamin D administration resulted in a pronounced reduction in aortic atherosclerotic plaque formation and the development of SMA-a-positive foam cells. Vitamin D further suppressed TLR4, CD36, and SR-A in atherosclerotic plaque lesions while promoting ABCA1, ABCG1, and LXR-α upregulation. 1, 25 (OH)2 D3 significantly reduced Dil-ox-LDL uptake and increased NBD-LDL efflux in VSMCs, in addition to suppressing TLR4, CD36, and SR-A expression, while upregulating ABCA1, ABCG1, and LXR-α. Knocking down TLR4 impaired VSMC foam cell formation, while 1,25(OH)2D3-induced JNK activation suppressed TLR4 signaling and promoted VSMC foam cell development. Our study reveals that Vitamin D can reduce VSMC foam cell formation and protect against atherosclerotic progression through the JNK-TLR4 signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
期刊最新文献
Maternal sucrose consumption alters steroid levels in the mother, placenta and fetus. The levels of adropin and its therapeutic potential in diabetes. Identification of a vimentin-expressing α-cell phenotype in CF and normal pancreas. Leptin potentiates bone loss at skeletal sites distant from focal inflammation in female ob/ob mice. Steroidogenic acute regulatory protein in fish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1