{"title":"Deletion of filamin A-interacting protein (FILIP) results in a weak grip strength and abnormal responses to nociceptive stimulation","authors":"Hideshi Yagi , Keizo Takao , Satoko Hattori , Yusuke Minato , Sachi Kuwahara-Otani , Seishi Maeda , Koichi Noguchi , Tsuyoshi Miyakawa , Makoto Sato","doi":"10.1016/j.neulet.2025.138158","DOIUrl":null,"url":null,"abstract":"<div><div>Filamin A-interacting protein (FILIP in mice, FILIP1 in humans) was first identified as a protein that negatively controls neuronal migration in rodents, and was subsequently demonstrated to be pivotal for the development of the neocortex. In the previous study, we generated FILIP knockout mice to investigate the in vivo functions of FILIP in cortical development. Since FILIP mRNA is widely expressed in the body, we systematically examined FILIP-knockout mice to determine the functions of FILIP throughout the body. Our results showed that FILIP-knockout mice exhibited weak grip strength and sensory abnormalities. Interestingly, we also found that FILIP was expressed in a subset of neurons in the dorsal root ganglion (DRG). Recent research has reported that <em>FILIP1</em> mutations lead to severe neurological and musculoskeletal abnormalities, resulting in the proposal of a new disease entity, termed FILIP1opathy. It is expected that our FILIP-knockout mice could be used as a model for the pathological investigation of FILIP1opathy.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"851 ","pages":"Article 138158"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000461","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Filamin A-interacting protein (FILIP in mice, FILIP1 in humans) was first identified as a protein that negatively controls neuronal migration in rodents, and was subsequently demonstrated to be pivotal for the development of the neocortex. In the previous study, we generated FILIP knockout mice to investigate the in vivo functions of FILIP in cortical development. Since FILIP mRNA is widely expressed in the body, we systematically examined FILIP-knockout mice to determine the functions of FILIP throughout the body. Our results showed that FILIP-knockout mice exhibited weak grip strength and sensory abnormalities. Interestingly, we also found that FILIP was expressed in a subset of neurons in the dorsal root ganglion (DRG). Recent research has reported that FILIP1 mutations lead to severe neurological and musculoskeletal abnormalities, resulting in the proposal of a new disease entity, termed FILIP1opathy. It is expected that our FILIP-knockout mice could be used as a model for the pathological investigation of FILIP1opathy.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.