Molecular pathways: the quest for effective MAO-B inhibitors in neurodegenerative therapy.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-02-17 DOI:10.1007/s11033-025-10349-x
Mega Obukohwo Oyovwi, Onoriode Andrew Udi, Adedeji David Atere, Gregory Uchechukwu Joseph, Udoji Godsday Ogbutor
{"title":"Molecular pathways: the quest for effective MAO-B inhibitors in neurodegenerative therapy.","authors":"Mega Obukohwo Oyovwi, Onoriode Andrew Udi, Adedeji David Atere, Gregory Uchechukwu Joseph, Udoji Godsday Ogbutor","doi":"10.1007/s11033-025-10349-x","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases like Parkinson's and Alzheimer's are a global health challenge due to their progressive degeneration, leading to cognitive decline and motor dysfunction. Monoamine oxidase B (MAO-B) enzyme is implicated in neurodegeneration, and developing inhibitors could be a promising therapeutic strategy. This review explores MAO-B activity molecular pathways, evaluates MAO-B inhibitors in neurodegenerative therapy, identifies challenges, and suggests future research directions. This review synthesizes findings from a range of scientific literature, including experimental studies, clinical trials, and biochemical analyses that focus on the role of MAO-B in neurodegeneration. Information was gathered from databases such as PubMed, Scopus, and Web of Science, ensuring a comprehensive overview of recent advancements in MAO-B inhibition strategies. The review reveals several promising MAO-B inhibitors that have demonstrated efficacy in preclinical models, as well as some that have progressed to clinical trials. Compounds such as rasagiline and selegiline have shown neuroprotective effects and benefits in symptom management in patients with Parkinson's disease. Furthermore, the review discusses novel inhibitors that target specific molecular pathways, enhancing the potential for improved therapeutic outcomes. However, several inhibitors also present challenges regarding their selectivity, side effects, and long-term efficacy. Research on MAO-B inhibitors for neurodegenerative diseases is crucial, with ongoing studies aiming for selective, potent molecules with fewer side effects and multimodal therapies.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"240"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10349-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases like Parkinson's and Alzheimer's are a global health challenge due to their progressive degeneration, leading to cognitive decline and motor dysfunction. Monoamine oxidase B (MAO-B) enzyme is implicated in neurodegeneration, and developing inhibitors could be a promising therapeutic strategy. This review explores MAO-B activity molecular pathways, evaluates MAO-B inhibitors in neurodegenerative therapy, identifies challenges, and suggests future research directions. This review synthesizes findings from a range of scientific literature, including experimental studies, clinical trials, and biochemical analyses that focus on the role of MAO-B in neurodegeneration. Information was gathered from databases such as PubMed, Scopus, and Web of Science, ensuring a comprehensive overview of recent advancements in MAO-B inhibition strategies. The review reveals several promising MAO-B inhibitors that have demonstrated efficacy in preclinical models, as well as some that have progressed to clinical trials. Compounds such as rasagiline and selegiline have shown neuroprotective effects and benefits in symptom management in patients with Parkinson's disease. Furthermore, the review discusses novel inhibitors that target specific molecular pathways, enhancing the potential for improved therapeutic outcomes. However, several inhibitors also present challenges regarding their selectivity, side effects, and long-term efficacy. Research on MAO-B inhibitors for neurodegenerative diseases is crucial, with ongoing studies aiming for selective, potent molecules with fewer side effects and multimodal therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
A novel mitochondrial gene rearrangement delineate Magallana gryphoides species from other Magallana crassostreine oysters. STAT-3, ELK-1, and c- Jun contributes IL-6 mediated ADAMTS-8 upregulation in colorectal cancer. BLM knockdown promotes cells autophagy via p53-AMPK-mTOR pathway in triple negative breast cancer cells. Comprehensive review and outline of genotypes and phenotypes of Arboleda-Tham syndrome spectrum: insights from novel variants. Identification of a missing Pictet-Spenglerase in the Gloriosa superba L. colchicine biosynthesis pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1