Low-intensity pulsed ultrasound promotes proliferation and differentiation of neural stem cells to enhance spinal cord injury recovery.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-02-18 DOI:10.1007/s11033-025-10333-5
Ye-Hui Liao, Min-Hao Tian, Wen-Yang Zhou, Bao-Qiang He, Chao Tang, Qiang Tang, Ru-Pei Ye, De-Jun Zhong
{"title":"Low-intensity pulsed ultrasound promotes proliferation and differentiation of neural stem cells to enhance spinal cord injury recovery.","authors":"Ye-Hui Liao, Min-Hao Tian, Wen-Yang Zhou, Bao-Qiang He, Chao Tang, Qiang Tang, Ru-Pei Ye, De-Jun Zhong","doi":"10.1007/s11033-025-10333-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neural stem cells (NSCs) are known for their high capacity for proliferation, self-renewal, and multidirectional differentiation. However, they often fail to survive or differentiate into mature neurons capable of replacing lost neurons. This study evaluated the potential role of low-intensity pulsed ultrasound (LIPUS) in promoting NSC proliferation and differentiation both in vitro and in vivo, as well as its role in enhancing spinal cord injury (SCI) recovery.</p><p><strong>Methods: </strong>NSCs were isolated, stimulated with LIPUS, and characterized through identification and detection assays. The safety and efficacy of LIPUS in promoting NSC proliferation and differentiation were assessed through cell viability and apoptosis assays, and neuronal marker expression analysis. In vivo, NSCs encoding fluorescent proteins were transplanted into a rat model of SCI. The SCI rats received LIPUS for 4 weeks. Later, functional recovery, morphological changes and neuronal structures were evaluated.</p><p><strong>Result: </strong>The isolated NSCs were successfully identified. LIPUS significantly enhanced NSC proliferation and increased the expression of key neurogenic markers and neurotrophic factors, while reducing GFAP expression and avoiding apoptosis. In vivo, the NSCs/LIPUS + group demonstrated higher survival and differentiation of transplanted NSCs, along with improved BBB scores and enhanced neural marker expression compared with the NSCs/LIPUS - group.</p><p><strong>Conclusion: </strong>LIPUS stimulation effectively promoted NSC proliferation and differentiation and enhanced the survival and function of transplanted NSCs at the SCI site, leading to improved SCI recovery.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"245"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10333-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neural stem cells (NSCs) are known for their high capacity for proliferation, self-renewal, and multidirectional differentiation. However, they often fail to survive or differentiate into mature neurons capable of replacing lost neurons. This study evaluated the potential role of low-intensity pulsed ultrasound (LIPUS) in promoting NSC proliferation and differentiation both in vitro and in vivo, as well as its role in enhancing spinal cord injury (SCI) recovery.

Methods: NSCs were isolated, stimulated with LIPUS, and characterized through identification and detection assays. The safety and efficacy of LIPUS in promoting NSC proliferation and differentiation were assessed through cell viability and apoptosis assays, and neuronal marker expression analysis. In vivo, NSCs encoding fluorescent proteins were transplanted into a rat model of SCI. The SCI rats received LIPUS for 4 weeks. Later, functional recovery, morphological changes and neuronal structures were evaluated.

Result: The isolated NSCs were successfully identified. LIPUS significantly enhanced NSC proliferation and increased the expression of key neurogenic markers and neurotrophic factors, while reducing GFAP expression and avoiding apoptosis. In vivo, the NSCs/LIPUS + group demonstrated higher survival and differentiation of transplanted NSCs, along with improved BBB scores and enhanced neural marker expression compared with the NSCs/LIPUS - group.

Conclusion: LIPUS stimulation effectively promoted NSC proliferation and differentiation and enhanced the survival and function of transplanted NSCs at the SCI site, leading to improved SCI recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
A novel mitochondrial gene rearrangement delineate Magallana gryphoides species from other Magallana crassostreine oysters. STAT-3, ELK-1, and c- Jun contributes IL-6 mediated ADAMTS-8 upregulation in colorectal cancer. BLM knockdown promotes cells autophagy via p53-AMPK-mTOR pathway in triple negative breast cancer cells. Comprehensive review and outline of genotypes and phenotypes of Arboleda-Tham syndrome spectrum: insights from novel variants. Identification of a missing Pictet-Spenglerase in the Gloriosa superba L. colchicine biosynthesis pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1