Targeting PGE2 mediated senescent neuron improves tumour therapy.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2025-02-18 DOI:10.1093/neuonc/noaf045
Jianyi Zhao, Linshi Wu, Gang Cai, Dan Ou, Keman Liao, Jian Yang, Li Zhou, Renhua Huang, Shukai Lin, Xi Huang, Qi Lv, Juxiang Chen, Lu Cao, Jiayi Chen, Yingying Lin
{"title":"Targeting PGE2 mediated senescent neuron improves tumour therapy.","authors":"Jianyi Zhao, Linshi Wu, Gang Cai, Dan Ou, Keman Liao, Jian Yang, Li Zhou, Renhua Huang, Shukai Lin, Xi Huang, Qi Lv, Juxiang Chen, Lu Cao, Jiayi Chen, Yingying Lin","doi":"10.1093/neuonc/noaf045","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent studies have highlighted bidirectional signalling between tumours and neurons; however, the interactions between tumours and neurons in response to radio-/chemotherapy remain obscure, which hampers the tumour treatment.</p><p><strong>Methods: </strong>Glioblastoma organoids (GBOs) and primary neuron coculture, targeted metabonomics, RNA pulldown, mass spectrum, co-immunoprecipitation, RNA-sequencing, transcript/protein validations and multi-electrode arrays were performed to analyse neuron-tumour interaction in response to therapy. In vivo validations were conducted in orthotopic mouse models. Diagnostic and prognostic values were evaluated in serum, tissue-microarray as well as TCGA.</p><p><strong>Results: </strong>GBOs recruited and induced pro-tumour-survival senescent neurons upon radiation/chemotherapeutic treatment. Targeted metabonomics revealed that significantly increased tumour-derived prostaglandin E2 (PGE2) induced neuronal senescence phenotype. Screening of enzymes involved in PGE2 synthesis identified prostaglandin E synthase 3 (PTGES3) as the key enzyme responsible for PGE2 upregulation. Biochemical studies revealed that irradiation or chemotherapeutic drug-triggered asparagine endopeptidase (AEP) specifically cleaved eIF4A1 to produce teIF4A1-C, which dissociated from DDX6 and recruited eIF4A3 and PABPN1 to promote the mRNA stability of PTGES3. Elevated PGE2 reciprocally enhanced AEP expression. Inhibiting PGE2 or AEP reduced neuronal senescence and delayed tumour progression. Strikingly, single-cell analysis further showed that expressions of AEP/PTGES3/EIF4A1 in tumour cells were consistent with senescent neuronal CDKN1A in high-neuronal-connectivity glioblastoma. The serum PGE2 concentration was elevated after radiation and higher in resistant glioblastoma patients. High expression of PTGES3 was associated with a poor prognosis.</p><p><strong>Conclusions: </strong>Our study revealed that the AEP/PGE2 feedback loop modulates tumour-induced neuronal senescence upon radio-/chemotherapy and highlight the therapeutic value to improve tumour therapy.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf045","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent studies have highlighted bidirectional signalling between tumours and neurons; however, the interactions between tumours and neurons in response to radio-/chemotherapy remain obscure, which hampers the tumour treatment.

Methods: Glioblastoma organoids (GBOs) and primary neuron coculture, targeted metabonomics, RNA pulldown, mass spectrum, co-immunoprecipitation, RNA-sequencing, transcript/protein validations and multi-electrode arrays were performed to analyse neuron-tumour interaction in response to therapy. In vivo validations were conducted in orthotopic mouse models. Diagnostic and prognostic values were evaluated in serum, tissue-microarray as well as TCGA.

Results: GBOs recruited and induced pro-tumour-survival senescent neurons upon radiation/chemotherapeutic treatment. Targeted metabonomics revealed that significantly increased tumour-derived prostaglandin E2 (PGE2) induced neuronal senescence phenotype. Screening of enzymes involved in PGE2 synthesis identified prostaglandin E synthase 3 (PTGES3) as the key enzyme responsible for PGE2 upregulation. Biochemical studies revealed that irradiation or chemotherapeutic drug-triggered asparagine endopeptidase (AEP) specifically cleaved eIF4A1 to produce teIF4A1-C, which dissociated from DDX6 and recruited eIF4A3 and PABPN1 to promote the mRNA stability of PTGES3. Elevated PGE2 reciprocally enhanced AEP expression. Inhibiting PGE2 or AEP reduced neuronal senescence and delayed tumour progression. Strikingly, single-cell analysis further showed that expressions of AEP/PTGES3/EIF4A1 in tumour cells were consistent with senescent neuronal CDKN1A in high-neuronal-connectivity glioblastoma. The serum PGE2 concentration was elevated after radiation and higher in resistant glioblastoma patients. High expression of PTGES3 was associated with a poor prognosis.

Conclusions: Our study revealed that the AEP/PGE2 feedback loop modulates tumour-induced neuronal senescence upon radio-/chemotherapy and highlight the therapeutic value to improve tumour therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
SOX2 commands LIM homeobox transcription factors in choroid plexus development and tumorigenesis. Targeting PDGFRA-SHP2 Signaling Enhances Radiotherapy in IDH1-Mutant Glioma. An in-depth survey of immunosuppressive myeloid cell heterogeneity in GBM. Differentiation of Tumor vs. Peritumoral Cortex in Gliomas by Intraoperative Electrocorticography. SWI/SNF complexes govern ontology-specific transcription factor function in MYC-subtype atypical teratoid rhabdoid tumor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1