Long-term pulmonary complications in sulfur mustard-exposed patients: gene expression and DNA methylation of OGG1.

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY Bioimpacts Pub Date : 2024-05-19 eCollection Date: 2025-01-01 DOI:10.34172/bi.2023.27735
Mohammad Saber Zamani, Tooba Ghazanfari
{"title":"Long-term pulmonary complications in sulfur mustard-exposed patients: gene expression and DNA methylation of OGG1.","authors":"Mohammad Saber Zamani, Tooba Ghazanfari","doi":"10.34172/bi.2023.27735","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>It is well established that tissues exposed to sulfur mustard (SM) generate high levels of reactive oxygen species. This leads to oxidative stress and, ultimately, damage to DNA molecules over the course of time. Additionally, SM, through its alkylating effects, is capable of directly damaging DNA on its own. In cells, these damages trigger a variety of DNA repair pathways, including the base excision repair (BER) pathway. Even so, in the long run, it remains unclear how the BER repair pathways will react.</p><p><strong>Methods: </strong>The purpose of this study was to assess the promoter DNA methylation and the mRNA expression of 8-oxoguanine glycosylase (OGG1), one of the key components of the BER pathway, in patient PBMCs that were exposed to SM 27 years ago using methylation-sensitive high resolution melting and qPCR. The study was conducted on three groups of participants exposed to SM with mild (n = 20), moderate (n = 24), and severe (n = 20) lung complications.</p><p><strong>Results: </strong>Our results showed significant OGG1 mRNA overexpression was observed in moderate groups compared to mild groups (<i>P</i> = 0.036). DNA methylation was also altered in mild-moderate and moderate-severe groups (<i>P</i> < 0.0001 and 0.023, respectively). Although aging was significantly associated with OGG1 mRNA expression, promoter DNA methylation of OGG1 was not associated with its mRNA expression.</p><p><strong>Conclusion: </strong>This study revealed differences in OGG1 mRNA expression and DNA methylation among the severity groups of long-term pulmonary complications associated with SM exposure. However, there was no correlation between OGG1 DNA methylation and mRNA expression. Therefore, it appears that other mechanisms may be contributing to the dysregulation of OGG1 mRNA expression.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"15 ","pages":"27735"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2023.27735","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: It is well established that tissues exposed to sulfur mustard (SM) generate high levels of reactive oxygen species. This leads to oxidative stress and, ultimately, damage to DNA molecules over the course of time. Additionally, SM, through its alkylating effects, is capable of directly damaging DNA on its own. In cells, these damages trigger a variety of DNA repair pathways, including the base excision repair (BER) pathway. Even so, in the long run, it remains unclear how the BER repair pathways will react.

Methods: The purpose of this study was to assess the promoter DNA methylation and the mRNA expression of 8-oxoguanine glycosylase (OGG1), one of the key components of the BER pathway, in patient PBMCs that were exposed to SM 27 years ago using methylation-sensitive high resolution melting and qPCR. The study was conducted on three groups of participants exposed to SM with mild (n = 20), moderate (n = 24), and severe (n = 20) lung complications.

Results: Our results showed significant OGG1 mRNA overexpression was observed in moderate groups compared to mild groups (P = 0.036). DNA methylation was also altered in mild-moderate and moderate-severe groups (P < 0.0001 and 0.023, respectively). Although aging was significantly associated with OGG1 mRNA expression, promoter DNA methylation of OGG1 was not associated with its mRNA expression.

Conclusion: This study revealed differences in OGG1 mRNA expression and DNA methylation among the severity groups of long-term pulmonary complications associated with SM exposure. However, there was no correlation between OGG1 DNA methylation and mRNA expression. Therefore, it appears that other mechanisms may be contributing to the dysregulation of OGG1 mRNA expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
期刊最新文献
Performance of protein N linear epitopes in serodiagnosis of COVID-19 infection. Effect of microRNA-141-3p, E2F3, CDK3, and KAT2B overexpression on histologic tumor grade and metastasis status in untreated breast cancer tissues. Simultaneous effect of miR-21 suppression and miR-143 restoration on inhibition of proliferation and migration in SW-480 colorectal cancer cells. The effectiveness of antioxidant agents in delaying progression of diabetic nephropathy: A systematic review of randomized controlled trials. Microfluidics as a promising technology for personalized medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1