Evaluating Salidroside as a Therapeutic Agent for Vascular Calcification Using Network Pharmacology and Experimental Rat Models.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2025-01-31 DOI:10.3791/67728
Han-Ying Xu, Xiao-Lei Tang, Peng-Fei Li, Dong-Mei Zhang, Guang Ta, Jing Lu, Jian Wang
{"title":"Evaluating Salidroside as a Therapeutic Agent for Vascular Calcification Using Network Pharmacology and Experimental Rat Models.","authors":"Han-Ying Xu, Xiao-Lei Tang, Peng-Fei Li, Dong-Mei Zhang, Guang Ta, Jing Lu, Jian Wang","doi":"10.3791/67728","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular calcification (VC) is a critical pathological condition associated with significant morbidity and mortality. This study employs a hybrid approach of network pharmacology and molecular biology to delineate the therapeutic mechanisms of salidroside (SAL), an active compound from Rhodiola crenulata, against VC. Through database mining and network analysis, 388 SAL targets intersecting with 2871 VC-associated targets were identified, resulting in 208 common targets. A protein-protein interaction (PPI) network constructed via the String database and topological analysis in Cytoscape 3.9.1 pinpointed 10 key targets, including IL6, TNF, TP53, IL1B, HIF1A, CASP3, and STAT3, among others. The identified genes were concentrated in the lipid and atherosclerosis pathways, indicating that the improvement of VC by SAL may occur through the regulation of abnormal expression of lipid and inflammatory factors. It was also found that SAL inhibits the abnormal expression of inflammatory factors, thereby activating the JAK2/STAT3 pathway to intervene in the progression of VC. The JAK2/STAT3 pathway is a key molecular mechanism by which SAL prevents further deterioration of VC. Functional enrichment analyses revealed the involvement of these targets in inflammatory responses and lipid metabolism, pivotal pathways in VC. In vivo studies in rats demonstrated SAL's efficacy in mitigating dyslipidemia and vascular inflammation, with improved serum lipid profiles and reduced vascular calcium deposition. The mechanistic exploration, grounded in Western blot analysis, demonstrated salidroside's ability to regulate the JAK2/STAT3 signaling pathway, highlighting its potential as a modulator in this critical molecular mechanism and offering a potential therapeutic target for VC. The strength of this research lies in its methodological rigor, integrating computational predictions with in vivo validations. This comprehensive approach establishes a robust framework for exploring the therapeutic mechanisms of natural compounds in combating VC.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67728","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular calcification (VC) is a critical pathological condition associated with significant morbidity and mortality. This study employs a hybrid approach of network pharmacology and molecular biology to delineate the therapeutic mechanisms of salidroside (SAL), an active compound from Rhodiola crenulata, against VC. Through database mining and network analysis, 388 SAL targets intersecting with 2871 VC-associated targets were identified, resulting in 208 common targets. A protein-protein interaction (PPI) network constructed via the String database and topological analysis in Cytoscape 3.9.1 pinpointed 10 key targets, including IL6, TNF, TP53, IL1B, HIF1A, CASP3, and STAT3, among others. The identified genes were concentrated in the lipid and atherosclerosis pathways, indicating that the improvement of VC by SAL may occur through the regulation of abnormal expression of lipid and inflammatory factors. It was also found that SAL inhibits the abnormal expression of inflammatory factors, thereby activating the JAK2/STAT3 pathway to intervene in the progression of VC. The JAK2/STAT3 pathway is a key molecular mechanism by which SAL prevents further deterioration of VC. Functional enrichment analyses revealed the involvement of these targets in inflammatory responses and lipid metabolism, pivotal pathways in VC. In vivo studies in rats demonstrated SAL's efficacy in mitigating dyslipidemia and vascular inflammation, with improved serum lipid profiles and reduced vascular calcium deposition. The mechanistic exploration, grounded in Western blot analysis, demonstrated salidroside's ability to regulate the JAK2/STAT3 signaling pathway, highlighting its potential as a modulator in this critical molecular mechanism and offering a potential therapeutic target for VC. The strength of this research lies in its methodological rigor, integrating computational predictions with in vivo validations. This comprehensive approach establishes a robust framework for exploring the therapeutic mechanisms of natural compounds in combating VC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
Erratum: Bulk Electroacupuncture Operation for Mice or Young Rats. Erratum: Periorbital Placement of a Laser Doppler Probe for Cerebral Blood Flow Monitoring Prior to Middle Cerebral Artery Occlusion in Rodent Models. 2.5D Model for Ex Vivo Mechanical Characterization of Sprouting Angiogenesis in Living Tissue. Characterizing Extracellular Vesicles from Biological Fluids. Fluorescence Assays for the Study of Mycobacterium tuberculosis Interaction with the Immune Receptor SLAMF1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1