Expected Value of Sample Information Calculations for Risk Prediction Model Validation.

IF 3.1 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES Medical Decision Making Pub Date : 2025-02-18 DOI:10.1177/0272989X251314010
Mohsen Sadatsafavi, Andrew J Vickers, Tae Yoon Lee, Paul Gustafson, Laure Wynants
{"title":"Expected Value of Sample Information Calculations for Risk Prediction Model Validation.","authors":"Mohsen Sadatsafavi, Andrew J Vickers, Tae Yoon Lee, Paul Gustafson, Laure Wynants","doi":"10.1177/0272989X251314010","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The purpose of external validation of a risk prediction model is to evaluate its performance before recommending it for use in a new population. Sample size calculations for such validation studies are currently based on classical inferential statistics around metrics of discrimination, calibration, and net benefit (NB). For NB as a measure of clinical utility, the relevance of inferential statistics is doubtful. Value-of-information methodology enables quantifying the value of collecting validation data in terms of expected gain in clinical utility.</p><p><strong>Methods: </strong>We define the validation expected value of sample information (EVSI) as the expected gain in NB by procuring a validation sample of a given size. We propose 3 algorithms for EVSI computation and compare their face validity and computation time in simulation studies. In a case study, we use the non-US subset of a clinical trial to create a risk prediction model for short-term mortality after myocardial infarction and calculate validation EVSI at a range of sample sizes for the US population.</p><p><strong>Results: </strong>Computation methods generated similar EVSI values in simulation studies, although they differed in numerical accuracy and computation times. At 2% risk threshold, procuring 1,000 observations for external validation, had an EVSI of 0.00101 in true-positive units or 0.04938 in false-positive units. Scaled by heart attack incidence in the United States, the population EVSI was 806 in true positives gained, or 39,500 in false positives averted, annually. Validation studies with >4,000 observations had diminishing returns, as the EVSIs were approaching their maximum possible value.</p><p><strong>Conclusion: </strong>Value-of-information methodology quantifies the return on investment from conducting an external validation study and can provide a value-based perspective when designing such studies.</p><p><strong>Highlights: </strong>In external validation studies of risk prediction models, the finite size of the validation sample leads to uncertain conclusions about the performance of the model. This uncertainty has hitherto been approached from a classical inferential perspective (e.g., confidence interval around the c-statistic).Correspondingly, sample size calculations for validation studies have been based on classical inferential statistics. For measures of clinical utility such as net benefit, the relevance of this approach is doubtful.This article defines the expected value of sample information (EVSI) for model validation and suggests algorithms for its computation. Validation EVSI quantifies the return on investment from conducting a validation study.Value-based approaches rooted in decision theory can complement contemporary study design and sample size calculation methods in predictive analytics.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"272989X251314010"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0272989X251314010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The purpose of external validation of a risk prediction model is to evaluate its performance before recommending it for use in a new population. Sample size calculations for such validation studies are currently based on classical inferential statistics around metrics of discrimination, calibration, and net benefit (NB). For NB as a measure of clinical utility, the relevance of inferential statistics is doubtful. Value-of-information methodology enables quantifying the value of collecting validation data in terms of expected gain in clinical utility.

Methods: We define the validation expected value of sample information (EVSI) as the expected gain in NB by procuring a validation sample of a given size. We propose 3 algorithms for EVSI computation and compare their face validity and computation time in simulation studies. In a case study, we use the non-US subset of a clinical trial to create a risk prediction model for short-term mortality after myocardial infarction and calculate validation EVSI at a range of sample sizes for the US population.

Results: Computation methods generated similar EVSI values in simulation studies, although they differed in numerical accuracy and computation times. At 2% risk threshold, procuring 1,000 observations for external validation, had an EVSI of 0.00101 in true-positive units or 0.04938 in false-positive units. Scaled by heart attack incidence in the United States, the population EVSI was 806 in true positives gained, or 39,500 in false positives averted, annually. Validation studies with >4,000 observations had diminishing returns, as the EVSIs were approaching their maximum possible value.

Conclusion: Value-of-information methodology quantifies the return on investment from conducting an external validation study and can provide a value-based perspective when designing such studies.

Highlights: In external validation studies of risk prediction models, the finite size of the validation sample leads to uncertain conclusions about the performance of the model. This uncertainty has hitherto been approached from a classical inferential perspective (e.g., confidence interval around the c-statistic).Correspondingly, sample size calculations for validation studies have been based on classical inferential statistics. For measures of clinical utility such as net benefit, the relevance of this approach is doubtful.This article defines the expected value of sample information (EVSI) for model validation and suggests algorithms for its computation. Validation EVSI quantifies the return on investment from conducting a validation study.Value-based approaches rooted in decision theory can complement contemporary study design and sample size calculation methods in predictive analytics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Decision Making
Medical Decision Making 医学-卫生保健
CiteScore
6.50
自引率
5.60%
发文量
146
审稿时长
6-12 weeks
期刊介绍: Medical Decision Making offers rigorous and systematic approaches to decision making that are designed to improve the health and clinical care of individuals and to assist with health care policy development. Using the fundamentals of decision analysis and theory, economic evaluation, and evidence based quality assessment, Medical Decision Making presents both theoretical and practical statistical and modeling techniques and methods from a variety of disciplines.
期刊最新文献
The Effect of Patient Decision Aid Attributes on Patient Outcomes: A Network Meta-Analysis of a Systematic Review. Expected Value of Sample Information Calculations for Risk Prediction Model Validation. Recalibrating an Established Microsimulation Model to Capture Trends and Projections of Colorectal Cancer Incidence and Mortality. Development of a Microsimulation Model to Project the Future Prevalence of Childhood Cancer in Ontario, Canada. How Inclusive Are Patient Decision Aids for People with Limited Health Literacy? An Analysis of Understandability Criteria and the Communication about Options and Probabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1