A Context-Dependent CNN-Based Framework for Multiple Sclerosis Segmentation in MRI.

International journal of neural systems Pub Date : 2025-03-01 Epub Date: 2024-12-13 DOI:10.1142/S0129065725500066
Giuseppe Placidi, Luigi Cinque, Gian Luca Foresti, Francesca Galassi, Filippo Mignosi, Michele Nappi, Matteo Polsinelli
{"title":"A Context-Dependent CNN-Based Framework for Multiple Sclerosis Segmentation in MRI.","authors":"Giuseppe Placidi, Luigi Cinque, Gian Luca Foresti, Francesca Galassi, Filippo Mignosi, Michele Nappi, Matteo Polsinelli","doi":"10.1142/S0129065725500066","DOIUrl":null,"url":null,"abstract":"<p><p>Despite several automated strategies for identification/segmentation of Multiple Sclerosis (MS) lesions in Magnetic Resonance Imaging (MRI) being developed, they consistently fall short when compared to the performance of human experts. This emphasizes the unique skills and expertise of human professionals in dealing with the uncertainty resulting from the vagueness and variability of MS, the lack of specificity of MRI concerning MS, and the inherent instabilities of MRI. Physicians manage this uncertainty in part by relying on their radiological, clinical, and anatomical experience. We have developed an automated framework for identifying and segmenting MS lesions in MRI scans by introducing a novel approach to replicating human diagnosis, a significant advancement in the field. This framework has the potential to revolutionize the way MS lesions are identified and segmented, being based on three main concepts: (1) Modeling the uncertainty; (2) Use of separately trained Convolutional Neural Networks (CNNs) optimized for detecting lesions, also considering their context in the brain, and to ensure spatial continuity; (3) Implementing an ensemble classifier to combine information from these CNNs. The proposed framework has been trained, validated, and tested on a single MRI modality, the FLuid-Attenuated Inversion Recovery (FLAIR) of the MSSEG benchmark public data set containing annotated data from seven expert radiologists and one ground truth. The comparison with the ground truth and each of the seven human raters demonstrates that it operates similarly to human raters. At the same time, the proposed model demonstrates more stability, effectiveness and robustness to biases than any other state-of-the-art model though using just the FLAIR modality.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":"35 3","pages":"2550006"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite several automated strategies for identification/segmentation of Multiple Sclerosis (MS) lesions in Magnetic Resonance Imaging (MRI) being developed, they consistently fall short when compared to the performance of human experts. This emphasizes the unique skills and expertise of human professionals in dealing with the uncertainty resulting from the vagueness and variability of MS, the lack of specificity of MRI concerning MS, and the inherent instabilities of MRI. Physicians manage this uncertainty in part by relying on their radiological, clinical, and anatomical experience. We have developed an automated framework for identifying and segmenting MS lesions in MRI scans by introducing a novel approach to replicating human diagnosis, a significant advancement in the field. This framework has the potential to revolutionize the way MS lesions are identified and segmented, being based on three main concepts: (1) Modeling the uncertainty; (2) Use of separately trained Convolutional Neural Networks (CNNs) optimized for detecting lesions, also considering their context in the brain, and to ensure spatial continuity; (3) Implementing an ensemble classifier to combine information from these CNNs. The proposed framework has been trained, validated, and tested on a single MRI modality, the FLuid-Attenuated Inversion Recovery (FLAIR) of the MSSEG benchmark public data set containing annotated data from seven expert radiologists and one ground truth. The comparison with the ground truth and each of the seven human raters demonstrates that it operates similarly to human raters. At the same time, the proposed model demonstrates more stability, effectiveness and robustness to biases than any other state-of-the-art model though using just the FLAIR modality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online and Cross-User Finger Movement Pattern Recognition by Decoding Neural Drive Information from Surface Electromyogram. Architecture Knowledge Distillation for Evolutionary Generative Adversarial Network. Minimal Neural Network Conditions for Encoding Future Interactions. Frequency-Assisted Local Attention in Lower Layers of Visual Transformers. End-User Confidence in Artificial Intelligence-Based Predictions Applied to Biomedical Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1