Neuron with well-designed ionic system.

IF 1.6 Q4 BIOPHYSICS Biophysics and physicobiology Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.2142/biophysico.bppb-v21.0028
Takayoshi Tsubo
{"title":"Neuron with well-designed ionic system.","authors":"Takayoshi Tsubo","doi":"10.2142/biophysico.bppb-v21.0028","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons have an ionic system with several types of ion pumps and ion channels on their membranes. Each ion pump creates a specific difference in ion concentration inside and outside the neuron, and the energy resulting from this difference in concentration is maintained inside the neuron as a resting potential. Each ion channel senses the necessary situation, opens the channel, and allows the corresponding ion to pass through to perform its corresponding role. This ionic system realizes important functions such as (i) fast conduction of action potentials, (ii) achieving synaptic integration in response to several inputs with a time lag, and (iii) the information processing functions by neural circuits. However, the mechanisms by which these functions are realized have remained unclear. Therefore, based on the reports on various highly polymeric ion pumps, ion channels, cell membranes, and other components that have been elucidated so far, author analyzed how this ionic system can realize the above important functions from an electrical circuit designer point of view. As a result of a series of analyses, it was found that neurons realize each function by making full use of high-density packaging technology based on basic electrical principles and making maximum use of the extremely high dielectric properties of the ionic fluid of neurons. In other words, neuron looks to equip well designed ionic system which is the collaboration by designers of proteins and membranes that perform advanced functions and designers of electrical circuits that utilize them to achieve important functions electrically.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 4","pages":"e210028"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Neurons have an ionic system with several types of ion pumps and ion channels on their membranes. Each ion pump creates a specific difference in ion concentration inside and outside the neuron, and the energy resulting from this difference in concentration is maintained inside the neuron as a resting potential. Each ion channel senses the necessary situation, opens the channel, and allows the corresponding ion to pass through to perform its corresponding role. This ionic system realizes important functions such as (i) fast conduction of action potentials, (ii) achieving synaptic integration in response to several inputs with a time lag, and (iii) the information processing functions by neural circuits. However, the mechanisms by which these functions are realized have remained unclear. Therefore, based on the reports on various highly polymeric ion pumps, ion channels, cell membranes, and other components that have been elucidated so far, author analyzed how this ionic system can realize the above important functions from an electrical circuit designer point of view. As a result of a series of analyses, it was found that neurons realize each function by making full use of high-density packaging technology based on basic electrical principles and making maximum use of the extremely high dielectric properties of the ionic fluid of neurons. In other words, neuron looks to equip well designed ionic system which is the collaboration by designers of proteins and membranes that perform advanced functions and designers of electrical circuits that utilize them to achieve important functions electrically.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有精心设计的离子系统的神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of alpha-glucosidase inhibition of four Vietnamese medicinal plants Combretum quadrangulare, Dicranopteris linearis, Psychotria adenophylla, and Garcinia schomburgkiana: In vitro and in vivo studies. Neuron with well-designed ionic system. Electrophysiological analysis of hyperkalemic cardiomyocytes using a multielectrode array system. Announcement of BPPB paper awards 2024. Rapid in vitro method to assemble and transfer DNA fragments into the JCVI-syn3B minimal synthetic bacterial genome through Cre/loxP system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1