Solving Markov decision processes via state space decomposition and time aggregation

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE European Journal of Operational Research Pub Date : 2025-02-05 DOI:10.1016/j.ejor.2025.01.037
Rodrigo e Alvim Alexandre, Marcelo D. Fragoso, Virgílio J.M. Ferreira Filho, Edilson F. Arruda
{"title":"Solving Markov decision processes via state space decomposition and time aggregation","authors":"Rodrigo e Alvim Alexandre, Marcelo D. Fragoso, Virgílio J.M. Ferreira Filho, Edilson F. Arruda","doi":"10.1016/j.ejor.2025.01.037","DOIUrl":null,"url":null,"abstract":"Although there are techniques to address large scale Markov decision processes (MDP), a computationally adequate solution of the so-called curse of dimensionality still eludes, in many aspects, a satisfactory treatment. In this paper, we advance in this issue by introducing a novel multi-subset partitioning scheme to allow for a distributed evaluation of the MDP, aiming to accelerate convergence and enable distributed policy improvement across the state space, whereby the value function and the policy improvement step can be performed independently, one subset at a time. The scheme’s innovation hinges on a design that induces communication properties that allow us to evaluate time aggregated trajectories via absorption analysis, thereby limiting the computational effort. The paper introduces and proves the convergence of a class of distributed time aggregation algorithms that combine the partitioning scheme with two-phase time aggregation to distribute the computations and accelerate convergence. In addition, we make use of Foster’s sufficient conditions for stochastic stability to develop a new theoretical result which underpins a partition design that guarantees that large regions of the state space are rarely visited and have a marginal effect on the system’s performance. This enables the design of approximate algorithms to find near-optimal solutions to large scale systems by focusing on the most visited regions of the state space. We validate the approach in a series of experiments featuring production and inventory and queuing applications. The results highlight the potential of the proposed algorithms to rapidly approach the optimal solution under different problem settings.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"1 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.01.037","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although there are techniques to address large scale Markov decision processes (MDP), a computationally adequate solution of the so-called curse of dimensionality still eludes, in many aspects, a satisfactory treatment. In this paper, we advance in this issue by introducing a novel multi-subset partitioning scheme to allow for a distributed evaluation of the MDP, aiming to accelerate convergence and enable distributed policy improvement across the state space, whereby the value function and the policy improvement step can be performed independently, one subset at a time. The scheme’s innovation hinges on a design that induces communication properties that allow us to evaluate time aggregated trajectories via absorption analysis, thereby limiting the computational effort. The paper introduces and proves the convergence of a class of distributed time aggregation algorithms that combine the partitioning scheme with two-phase time aggregation to distribute the computations and accelerate convergence. In addition, we make use of Foster’s sufficient conditions for stochastic stability to develop a new theoretical result which underpins a partition design that guarantees that large regions of the state space are rarely visited and have a marginal effect on the system’s performance. This enables the design of approximate algorithms to find near-optimal solutions to large scale systems by focusing on the most visited regions of the state space. We validate the approach in a series of experiments featuring production and inventory and queuing applications. The results highlight the potential of the proposed algorithms to rapidly approach the optimal solution under different problem settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
期刊最新文献
A nonparametric online control chart for monitoring crowd density using relative density-ratio estimation Cyclic stochastic two-echelon inventory routing for an application in medical supply A logic-based Benders decomposition approach for a fuel delivery problem with time windows, unsplit compartments, and split deliveries Editorial Board Heteroscedasticity-aware stratified sampling to improve uplift modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1