New Insight of CO2 Corrosion Performance on Cement for Enhanced Oil Recovery and Carbon Geological Storage Based on Nuclear Magnetic Resonance Technology
Daoyi Zhu*, Qi Zhao, Jiong Zhang, Yingqi Gao, Guanhao Li and Zhongcheng Wu,
{"title":"New Insight of CO2 Corrosion Performance on Cement for Enhanced Oil Recovery and Carbon Geological Storage Based on Nuclear Magnetic Resonance Technology","authors":"Daoyi Zhu*, Qi Zhao, Jiong Zhang, Yingqi Gao, Guanhao Li and Zhongcheng Wu, ","doi":"10.1021/acs.energyfuels.4c0482510.1021/acs.energyfuels.4c04825","DOIUrl":null,"url":null,"abstract":"<p >As a major means of reducing carbon emissions and achieving the carbon-zero target, CO<sub>2</sub> geological storage has been widely applied in depleted oil or gas reservoirs for enhanced oil recovery. However, during CO<sub>2</sub> injection and long-term geological storage, the carbonation-induced corrosion of the cement sheath is the main threat as CO<sub>2</sub> may leakage from the well to atmosphere. In this study, G-grade oil well cement was placed in different CO<sub>2</sub> corrosion environments to investigate the effects of the CO<sub>2</sub> pressure and water saturation on long-term cement corrosion. Mechanical and pore permeability properties, as well as changes in the microstructure and composition, were analyzed using uniaxial compression, X-ray diffraction, mercury intrusion porosimetry, and scanning electron microscopy testing methods, respectively. Specially, nuclear magnetic resonance (NMR) technology was used to evaluate the pore changes in cement during the CO<sub>2</sub> corrosion. Results showed that wet-phase corrosion facilitated the occurrence of carbonation reactions and the migration of corrosive medium and products. Moreover, the microstructure and composition of the CO<sub>2</sub>-corroded cement exhibited different characteristics at different stages of corrosion. The <i>T</i><sub>2</sub> spectrum curve indicated that the degree of CO<sub>2</sub> corrosion of cement was related to the diffusion rate of the CO<sub>2</sub>. When the pressure was low, CO<sub>2</sub> was difficult to penetrate deep into the cement, resulting in the smallest change in the NMR curve area under dry-phase CO<sub>2</sub> corrosion conditions at 5 MPa. This study employed nuclear magnetic technology to further analyze the mechanism of CO<sub>2</sub> corrosion on oil well cement at the microscopic level. It will contribute to a deeper understanding of the mechanism of CO<sub>2</sub> corrosion of cement and lay a theoretical analysis foundation for practical engineering applications of cement in CO<sub>2</sub> geological storage and enhanced oil recovery.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 7","pages":"3396–3406 3396–3406"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c04825","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As a major means of reducing carbon emissions and achieving the carbon-zero target, CO2 geological storage has been widely applied in depleted oil or gas reservoirs for enhanced oil recovery. However, during CO2 injection and long-term geological storage, the carbonation-induced corrosion of the cement sheath is the main threat as CO2 may leakage from the well to atmosphere. In this study, G-grade oil well cement was placed in different CO2 corrosion environments to investigate the effects of the CO2 pressure and water saturation on long-term cement corrosion. Mechanical and pore permeability properties, as well as changes in the microstructure and composition, were analyzed using uniaxial compression, X-ray diffraction, mercury intrusion porosimetry, and scanning electron microscopy testing methods, respectively. Specially, nuclear magnetic resonance (NMR) technology was used to evaluate the pore changes in cement during the CO2 corrosion. Results showed that wet-phase corrosion facilitated the occurrence of carbonation reactions and the migration of corrosive medium and products. Moreover, the microstructure and composition of the CO2-corroded cement exhibited different characteristics at different stages of corrosion. The T2 spectrum curve indicated that the degree of CO2 corrosion of cement was related to the diffusion rate of the CO2. When the pressure was low, CO2 was difficult to penetrate deep into the cement, resulting in the smallest change in the NMR curve area under dry-phase CO2 corrosion conditions at 5 MPa. This study employed nuclear magnetic technology to further analyze the mechanism of CO2 corrosion on oil well cement at the microscopic level. It will contribute to a deeper understanding of the mechanism of CO2 corrosion of cement and lay a theoretical analysis foundation for practical engineering applications of cement in CO2 geological storage and enhanced oil recovery.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.