Assessing Hydrogen Leakage in Underground Hydrogen Storage: Insights from Parametric Analysis

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2025-02-07 DOI:10.1021/acs.energyfuels.4c0551810.1021/acs.energyfuels.4c05518
Milad Hashemi, Behnam Sedaee* and Yousef Fathi, 
{"title":"Assessing Hydrogen Leakage in Underground Hydrogen Storage: Insights from Parametric Analysis","authors":"Milad Hashemi,&nbsp;Behnam Sedaee* and Yousef Fathi,&nbsp;","doi":"10.1021/acs.energyfuels.4c0551810.1021/acs.energyfuels.4c05518","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen plays a vital role in renewable energy systems and has a significant environmental impact. Storing hydrogen in underground geological formations offers an efficient and safe solution to balance production and consumption. However, due to hydrogen’s unique properties, there is a risk of leakage through the caprock of underground aquifers, potentially causing serious issues such as groundwater contamination, reduced storage efficiency, and explosion hazards. This study employs numerical simulations to investigate hydrogen leakage from caprock during underground storage, focusing on key parameters. These parameters include injection and production rates, cycle duration, hydrogen molecular diffusion, aquifer pressure, injection and production depths, well types, aquifer dip angle, caprock permeability, and capillary entry pressure. By examining these factors, the study provides an in-depth comprehensive analysis of hydrogen leakage from aquifers, addressing a critical gap in existing research. The results indicate that a significant amount of the total injected hydrogen leaks into the caprock after eight years of injection and storage cycles. This leakage can have significant environmental and economic impacts. The study also reveals that caprock permeability is crucial in influencing hydrogen leakage with higher permeability leading to increased leakage rates. Moreover, vertical caprock permeability has a more pronounced effect on leakage rates than horizontal permeability. Additionally, factors such as aquifer pressure, aquifer dip angle, injection and production depths, and hydrogen injection duration contribute to a higher hydrogen leakage from the caprock. The findings underscore the importance of carefully selecting underground hydrogen storage sites to mitigate the potential risks of hydrogen leakage.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 7","pages":"3668–3682 3668–3682"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05518","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen plays a vital role in renewable energy systems and has a significant environmental impact. Storing hydrogen in underground geological formations offers an efficient and safe solution to balance production and consumption. However, due to hydrogen’s unique properties, there is a risk of leakage through the caprock of underground aquifers, potentially causing serious issues such as groundwater contamination, reduced storage efficiency, and explosion hazards. This study employs numerical simulations to investigate hydrogen leakage from caprock during underground storage, focusing on key parameters. These parameters include injection and production rates, cycle duration, hydrogen molecular diffusion, aquifer pressure, injection and production depths, well types, aquifer dip angle, caprock permeability, and capillary entry pressure. By examining these factors, the study provides an in-depth comprehensive analysis of hydrogen leakage from aquifers, addressing a critical gap in existing research. The results indicate that a significant amount of the total injected hydrogen leaks into the caprock after eight years of injection and storage cycles. This leakage can have significant environmental and economic impacts. The study also reveals that caprock permeability is crucial in influencing hydrogen leakage with higher permeability leading to increased leakage rates. Moreover, vertical caprock permeability has a more pronounced effect on leakage rates than horizontal permeability. Additionally, factors such as aquifer pressure, aquifer dip angle, injection and production depths, and hydrogen injection duration contribute to a higher hydrogen leakage from the caprock. The findings underscore the importance of carefully selecting underground hydrogen storage sites to mitigate the potential risks of hydrogen leakage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead A New Doped Graphene-Based Catalyst for Hydrogen Evolution Reaction Under Low-Electrolyte Concentration and Biomass-Rich Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1