Boosting the Electrocatalytic Dinitrogen Reduction Reaction with Selenium Vacancy in Transition Metal Dichalcogenides

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2025-02-07 DOI:10.1021/acs.energyfuels.4c0583710.1021/acs.energyfuels.4c05837
Manan Guragain, Alankar Kafle, Qasim Adesope, Piumi P. Kularathne, Mojgan Gharaee, Bibek Sapkota, Hao Yan, Jeffry A. Kelber*, Thomas R. Cundari* and Francis D’Souza*, 
{"title":"Boosting the Electrocatalytic Dinitrogen Reduction Reaction with Selenium Vacancy in Transition Metal Dichalcogenides","authors":"Manan Guragain,&nbsp;Alankar Kafle,&nbsp;Qasim Adesope,&nbsp;Piumi P. Kularathne,&nbsp;Mojgan Gharaee,&nbsp;Bibek Sapkota,&nbsp;Hao Yan,&nbsp;Jeffry A. Kelber*,&nbsp;Thomas R. Cundari* and Francis D’Souza*,&nbsp;","doi":"10.1021/acs.energyfuels.4c0583710.1021/acs.energyfuels.4c05837","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical nitrogen reduction reaction (NRR) is emerging as a sustainable and carbon-free ammonia production approach under mild conditions, but it is highly dependent on the activity of the electrocatalyst material. Nevertheless, the availability of active sites on electrocatalysts for N<sub>2</sub> adsorption and activation limits the overall NRR performance. Herein, active site generation with defect engineering strategy is employed to explore selenium vacancy-rich transition metal dichalcogenides ex-MoSe<sub>2</sub> and ex-WSe<sub>2</sub> toward NRR. Thick-layered bulk MoSe<sub>2</sub> and WSe<sub>2</sub> are converted to selenium vacancy-rich few-layered nanosheets on chemical exfoliation. Highly promising electrocatalytic activity is witnessed for both materials. Typically, ex-MoSe<sub>2</sub> exhibited an NH<sub>3</sub> yield rate of 15.86 μg mg<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> and a Faradaic efficiency of 9.39% at −0.9 V vs Ag/AgCl in 0.1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte of pH = 7. Moreover, validation of the true ammonia production with the elimination of probable contamination is done via feeding gas purification, control experiments, and isotope labeling experiments. Importantly, density functional theory calculations exhibit selenium vacancy as a favorable active site for N<sub>2</sub> adsorption and activation for efficient NRR and strongly support the experimental findings.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 7","pages":"3619–3626 3619–3626"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05837","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical nitrogen reduction reaction (NRR) is emerging as a sustainable and carbon-free ammonia production approach under mild conditions, but it is highly dependent on the activity of the electrocatalyst material. Nevertheless, the availability of active sites on electrocatalysts for N2 adsorption and activation limits the overall NRR performance. Herein, active site generation with defect engineering strategy is employed to explore selenium vacancy-rich transition metal dichalcogenides ex-MoSe2 and ex-WSe2 toward NRR. Thick-layered bulk MoSe2 and WSe2 are converted to selenium vacancy-rich few-layered nanosheets on chemical exfoliation. Highly promising electrocatalytic activity is witnessed for both materials. Typically, ex-MoSe2 exhibited an NH3 yield rate of 15.86 μg mgcat–1 h–1 and a Faradaic efficiency of 9.39% at −0.9 V vs Ag/AgCl in 0.1 M Na2SO4 electrolyte of pH = 7. Moreover, validation of the true ammonia production with the elimination of probable contamination is done via feeding gas purification, control experiments, and isotope labeling experiments. Importantly, density functional theory calculations exhibit selenium vacancy as a favorable active site for N2 adsorption and activation for efficient NRR and strongly support the experimental findings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead A New Doped Graphene-Based Catalyst for Hydrogen Evolution Reaction Under Low-Electrolyte Concentration and Biomass-Rich Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1