Comparison of Vapor Pressure Estimation Methods Used to Model Secondary Organic Aerosol Formation from Reactions of Linear and Branched Alkenes with OH/NOx

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2025-02-11 DOI:10.1021/acsearthspacechem.4c0028510.1021/acsearthspacechem.4c00285
Emmaline R. Longnecker, Julia G. Bakker-Arkema and Paul J. Ziemann*, 
{"title":"Comparison of Vapor Pressure Estimation Methods Used to Model Secondary Organic Aerosol Formation from Reactions of Linear and Branched Alkenes with OH/NOx","authors":"Emmaline R. Longnecker,&nbsp;Julia G. Bakker-Arkema and Paul J. Ziemann*,&nbsp;","doi":"10.1021/acsearthspacechem.4c0028510.1021/acsearthspacechem.4c00285","DOIUrl":null,"url":null,"abstract":"<p >Modeling atmospheric reactions that lead to the formation of secondary organic aerosol (SOA) is an important tool for understanding the current and future impacts of human activity on the environment. Vapor pressure is a key parameter in modeling these reactions, as it largely determines the gas-particle partitioning of atmospheric oxidation products. However, the vapor pressures of many atmospherically relevant molecules are still poorly constrained. To aid modeling efforts, several structure–activity relationships (SARs) based on group contribution methods have been developed for estimating compound vapor pressures. The current study evaluates how four of these SARs: SIMPOL, EVAPORATION, SPARC, and Nannoolal impact the modeled predictions of SOA yields for reactions of C<sub>8</sub>–C<sub>14</sub> 1-alkenes and C<sub>9</sub>–C<sub>15</sub> 2-methyl-1-alkenes with OH radicals in the presence of NO<sub><i>x</i></sub>. The models include well-constrained, quantitative reaction mechanisms developed by our research group from several previous environmental chamber studies of product yields, gas-particle and gas-wall partitioning, and secondary reactions with OH radicals. Based on our previous product studies and the results of this study, there was no need to account for particle-phase oligomer formation. Comparison of modeled and measured SOA yields provide insight into the major products responsible for SOA formation over the large range of carbon numbers, and the sources of discrepancies between model predictions and measurements. The generally moderate to poor model-measurement agreement exemplifies the need for further development of vapor pressure estimation methods, which have a major impact on atmospheric SOA modeling. The systems studied here could be useful to others interested in developing and evaluating models for simulating SOA formation.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 2","pages":"314–326 314–326"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00285","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling atmospheric reactions that lead to the formation of secondary organic aerosol (SOA) is an important tool for understanding the current and future impacts of human activity on the environment. Vapor pressure is a key parameter in modeling these reactions, as it largely determines the gas-particle partitioning of atmospheric oxidation products. However, the vapor pressures of many atmospherically relevant molecules are still poorly constrained. To aid modeling efforts, several structure–activity relationships (SARs) based on group contribution methods have been developed for estimating compound vapor pressures. The current study evaluates how four of these SARs: SIMPOL, EVAPORATION, SPARC, and Nannoolal impact the modeled predictions of SOA yields for reactions of C8–C14 1-alkenes and C9–C15 2-methyl-1-alkenes with OH radicals in the presence of NOx. The models include well-constrained, quantitative reaction mechanisms developed by our research group from several previous environmental chamber studies of product yields, gas-particle and gas-wall partitioning, and secondary reactions with OH radicals. Based on our previous product studies and the results of this study, there was no need to account for particle-phase oligomer formation. Comparison of modeled and measured SOA yields provide insight into the major products responsible for SOA formation over the large range of carbon numbers, and the sources of discrepancies between model predictions and measurements. The generally moderate to poor model-measurement agreement exemplifies the need for further development of vapor pressure estimation methods, which have a major impact on atmospheric SOA modeling. The systems studied here could be useful to others interested in developing and evaluating models for simulating SOA formation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Characterization of Amino Acid Nanolayers and Their Interactions under Simulated Planetary Conditions Photochemical Emission from Soil as a Source of Atmospheric CO2 Anharmonic Vibrational Frequencies and Spectroscopic Constants for the Six Conformers of 1,2-Diiminoethane: A Promising Prebiotic Molecule for Astronomical Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1